• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Management Studies
    • Volume 13, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Management Studies
    • Volume 13, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparing Prediction Power of Artificial Neural Networks Compound Models in Predicting Credit Default Swap Prices through Black–Scholes–Merton Model

    (ندگان)پدیدآور
    Beytollahi, AsgharZeinali, Hadis
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.000 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Default risk is one of the most important types of risks, and credit default swap (CDS) is one of the most effective financial instruments to cover such risks. The lack of these instruments may reduce investment attraction, particularly for international investors, and impose potential losses on the economy of the countries lacking such financial instruments, among them, Iran. After the 2007 financial crisis, the importance of CDS has increasingly augmented because theoretically and practically, this instrument could significantly prevent catastrophes such as the mentioned crisis. The present study seeks to predict the price of CDS contracts with the Merton model as well as the compound neural network models including ANFIS, NNARX, AdaBoost, and SVM regression, and compare the predictive power of these algorithms which are among the most prestigious, intelligent models in finance. The research statistical population includes the A-rated North American and European companies which are known as the reference entities for credit default swaps. Data were collected from the Bloomberg Terminal for an eight-year period from 2008 to 2015. Contracts of 125 companies were selected as the statistical sample. The results reveal that the average predictive power of the NNARX is higher than that of other algorithms under scrutiny.
    کلید واژگان
    Derivative Financial Instruments
    ANFIS
    NNARX
    AdaBoost
    Support Vector Machine Regression
    corporate finance

    شماره نشریه
    1
    تاریخ نشر
    2020-01-01
    1398-10-11
    ناشر
    University of Tehran, College of Farabi
    پردیس فارابی دانشگاه تهران
    سازمان پدید آورنده
    Department of Accounting, Islamic Azad University of Kerman Branch, Iran
    Department of Accounting, Islamic Azad University of Kerman Branch, Iran

    شاپا
    2008-7055
    2345-3745
    URI
    https://dx.doi.org/10.22059/ijms.2019.276260.673534
    https://ijms.ut.ac.ir/article_72951.html
    https://iranjournals.nlai.ir/handle/123456789/323825

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب