نمایش مختصر رکورد

dc.contributor.authorFarahmandy Motlagh, M.en_US
dc.contributor.authorBehzadi, A.en_US
dc.date.accessioned1399-07-09T07:29:32Zfa_IR
dc.date.accessioned2020-09-30T07:29:32Z
dc.date.available1399-07-09T07:29:32Zfa_IR
dc.date.available2020-09-30T07:29:32Z
dc.date.issued2019-12-01en_US
dc.date.issued1398-09-10fa_IR
dc.date.submitted2020-05-16en_US
dc.date.submitted1399-02-27fa_IR
dc.identifier.citationFarahmandy Motlagh, M., Behzadi, A.. (2019). Solution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalar. International Journal of Nonlinear Analysis and Applications, 10, 97-114. doi: 10.22075/ijnaa.2019.4403en_US
dc.identifier.issn2008-6822
dc.identifier.urihttps://dx.doi.org/10.22075/ijnaa.2019.4403
dc.identifier.urihttps://ijnaa.semnan.ac.ir/article_4403.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/322970
dc.description.abstractThe Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric universefilledwithfreelyfallingdustlikematterwithoutpressure. First,wehaveconsideredaFinslerian anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have obtained the R(t,r) and S(t,r) with considering establish a new solution of Rµν = 0. Moreover, we attempttouseFinslergeometryasthegeometryofspacetimewhichcomputetheKretschmannscalar. An important problem in General Relativity is singularities. The curvature singularities is a point when the scalar curvature blows up diverges. Thus we have determined Ks singularity is at R = 0. Our result is the same as Reimannian geometry. We have completed with a brief example of how these solutions can be applied. Second, we have some notes about anstaz of the Schwarzschild and Friedmann- Robertson- Walker (FRW) metrics. We have supposed condition dlog(F) = dlog( ¯ F) and we have obtained ¯ F is constant along its geodesic and geodesic of F. Moreover we have computed Weyl and Douglas tensors for F2 and have concluded that Rijk = 0 and this conclude that Wijk = 0, thus F2 is the Ads Schwarzschild Finsler metric and therefore F2 is conformally flat. We have provided a Finslerian extention of Friedmann- Lemaitre- Robertson- Walker metric based on solution of the geodesic equation. Since the vacuum field equation in Finsler spacetime is equivalent to the vanishing of the Ricci scalar, we have obtained the energy- momentum tensor is zero.en_US
dc.format.extent169
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSemnan Universityen_US
dc.relation.ispartofInternational Journal of Nonlinear Analysis and Applicationsen_US
dc.relation.isversionofhttps://dx.doi.org/10.22075/ijnaa.2019.4403
dc.subjectEinstein’s equations, Lemaître–Tolman–Bondien_US
dc.subjectKretschmann scalar, Finsler Geometry, Friedmann-Robertson-Walker, Schwarzschilden_US
dc.titleSolution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalaren_US
dc.typeTexten_US
dc.typeSpecial issue editorialen_US
dc.contributor.departmentMathematics,Mathematics and Statistics,university of mazandaran, Babolsar, Iranen_US
dc.contributor.departmentDepartment of Mathematics, Faculty of Basic Sciences, University of Mazandaran, P. O. Box 47416-95447, Babolsar, Iranen_US
dc.citation.volume10
dc.citation.spage97
dc.citation.epage114
nlai.contributor.orcid0000-0002-8524-6995


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد