نمایش مختصر رکورد

dc.contributor.authorFirouzian, Imanen_US
dc.contributor.authorZahedi, Mortezaen_US
dc.contributor.authorHassanpour, Hamiden_US
dc.date.accessioned1399-07-09T07:29:22Zfa_IR
dc.date.accessioned2020-09-30T07:29:22Z
dc.date.available1399-07-09T07:29:22Zfa_IR
dc.date.available2020-09-30T07:29:22Z
dc.date.issued2019-11-01en_US
dc.date.issued1398-08-10fa_IR
dc.date.submitted2018-07-25en_US
dc.date.submitted1397-05-03fa_IR
dc.identifier.citationFirouzian, Iman, Zahedi, Morteza, Hassanpour, Hamid. (2019). Real-time Prediction and Synchronization of Business Process Instances using Data and Control Perspective. International Journal of Nonlinear Analysis and Applications, 10(1), 217-228. doi: 10.22075/ijnaa.2019.4065en_US
dc.identifier.issn2008-6822
dc.identifier.urihttps://dx.doi.org/10.22075/ijnaa.2019.4065
dc.identifier.urihttps://ijnaa.semnan.ac.ir/article_4065.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/322922
dc.description.abstractNowadays, in a competitive and dynamic environment of businesses, organizations need to moni-<br />tor, analyze and improve business processes with the use of Business Process Management Systems<br />(BPMSs). Management, prediction and time control of events in BPMS is one of the major chal-<br />lenges of this area of research that has attracted lots of researchers. In this paper, we present a<br />4-phase pipeline approach to the problem of synchronizing each pair of dependent process instances<br />to arrive at the corresponding pair of tasks simultaneous or near-simultaneous. In the rst phase,<br />the process model is mined from the event log and enriched by the probabilistic distributions of<br />time information. In the second phase, the hidden processing dependency between the each pair of<br />dependent process instances is formally de ned and is mined from the event log. In the third phase,<br />a process state prediction algorithm is presented to predict the future route of process instance and<br />then predict the remaining time of the process instance to a given point in a predicted route of the<br />business process. In the fourth phase, an iterative synchronization algorithm is presented based on<br />the presented process state prediction algorithm to make each pair of dependent process instances<br />arrive at the corresponding pair of tasks simultaneous or near-simultaneous. Experimental results<br />on a real-life event log of BPI challenge 2012 show that the proposed method leads to 39% reduction<br />in cycle time for dependent process instances.en_US
dc.format.extent3752
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSemnan Universityen_US
dc.relation.ispartofInternational Journal of Nonlinear Analysis and Applicationsen_US
dc.relation.isversionofhttps://dx.doi.org/10.22075/ijnaa.2019.4065
dc.subjectBusiness Processen_US
dc.subjectSynchronizationen_US
dc.subjectCycle Time Predictionen_US
dc.subjectDependent Process Instancesen_US
dc.titleReal-time Prediction and Synchronization of Business Process Instances using Data and Control Perspectiveen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentFaculty of Computer and IT, Shahrood University of Technology, Shahrood, Iranen_US
dc.contributor.departmentFaculty of Computer and IT, Shahrood University of Technology, Shahrood, Iranen_US
dc.contributor.departmentFaculty of Computer Engineering and IT, Shahrood University of Technology, Shahrood, Iranen_US
dc.citation.volume10
dc.citation.issue1
dc.citation.spage217
dc.citation.epage228


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد