• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Nonlinear Analysis and Applications
    • Volume 10, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Nonlinear Analysis and Applications
    • Volume 10, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cystoscopy Image Classification Using Deep Convolutional Neural Networks

    (ندگان)پدیدآور
    Hashemi, Seyyed Mohammad RezaHassanpour, HamidKozegar, EhsanTan, Tao
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    2.351 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In the past three decades, the use of smart methods in medical diagnostic systems has attracted the attention of many researchers. However, no smart activity has been provided in the field of medical image processing for diagnosis of bladder cancer through cystoscopy images despite the high prevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) and a multilayer neural network was applied to classify bladder cystoscopy images. One of the most important issues in training phase of neural networks is determining the learning rate because selecting too small or large learning rate leads to slow convergence, volatility and divergence, respectively. Therefore, an algorithm is required to dynamically change the convergence rate. In this respect, an adaptive method was presented for determining the learning rate so that the multilayer neural network could be improved. In this method, the learning rate is determined using a coefficient based on the difference between the accuracy of training and validation according to the output error. In addition, the rate of changes is updated according to the level of weight changes and output error. The proposed method was evaluated on 720 bladder cystoscopy images in four classes of blood in urine, benign and malignant masses. Based on the simulated results, the second proposed method (CNNs) achieved at least 17% decrease in error and increased the convergence speed of the proposed method in the classification of cystoscopy images, compared to the other competing methods.
    کلید واژگان
    Cystoscopy Images
    Medical Image Classi cation
    MLP Neural Network
    Adaptive Learning Rate
    CNNs

    شماره نشریه
    1
    تاریخ نشر
    2019-11-01
    1398-08-10
    ناشر
    Semnan University
    سازمان پدید آورنده
    Faculty of Computer Engineering and IT, Shahrood University of Technology, Shahrood, Iran
    Faculty of Computer Engineering and IT, Shahrood University of Technology, Shahrood, Iran
    University of Guilan, Guilan, Iran
    Eindhoven University of Technology, Eindhoven, The Netherlands

    شاپا
    2008-6822
    URI
    https://dx.doi.org/10.22075/ijnaa.2019.4064
    https://ijnaa.semnan.ac.ir/article_4064.html
    https://iranjournals.nlai.ir/handle/123456789/322921

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب