• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Nonlinear Analysis and Applications
    • Volume 11, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Nonlinear Analysis and Applications
    • Volume 11, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improving the performance of video Collaborative Filtering Recommender Systems using Optimization Algorithm

    (ندگان)پدیدآور
    Tohidi, NasimDadkhah, Chitra
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    559.6کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The growth amount of information on the Web makes it difficult for many web users to make decision and choose either information or goods. Thus, a recommender system is an approach that helps users to obtain their needs according to her/his preference within a massive amount of information rapidly without waste of time. The main advantage of using a recommender system in any online shopping or social media like Amazon, Netflix and Facebook is to increase the percentage of overall profits, customer satisfaction and retention. In this paper, we introduce an approach to increase the accuracy and to improve the performance of collaborative filtering recommender system. In this paper a hybrid approach is proposed to improve the performance of video collaborative filtering recommender system based on clustering and evolutionary algorithm. Proposed approach combines k-means clustering algorithm and two different evolutionary algorithms which are Accelerated Particle Swarm Optimization Algorithm (APSO) and Forest Optimization Algorithm (FOA). The main aim of this paper is to increase the accuracy of recommendation of user-based collaborative filtering video recommender system. Evaluation and computational results on the MovieLens dataset show that the proposed method has a better performance than the other related methods.
    کلید واژگان
    recommender system
    accelerated particle swarm optimization
    forest optimization algorithm
    collaborative filtering
    Clustering

    شماره نشریه
    1
    تاریخ نشر
    2020-01-01
    1398-10-11
    ناشر
    Semnan University
    سازمان پدید آورنده
    K.N.Toosi university of technology
    K.N.Toosi University of Technology

    شاپا
    2008-6822
    URI
    https://dx.doi.org/10.22075/ijnaa.2020.19127.2058
    https://ijnaa.semnan.ac.ir/article_4362.html
    https://iranjournals.nlai.ir/handle/123456789/322900

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب