A Hybrid Approach for Software Development Effort Estimation using Neural networks, Genetic Algorithm, Multiple Linear Regression and Imperialist Competitive Algorithm
(ندگان)پدیدآور
Khazaiepoor, MahdiKhatibi Bardsiri, AmidKeynia, Farshidنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Nowadays, effort estimation in software development is of great value and significance in project management. Accurate and appropriate cost estimation not only helps customers trust to invest but also has a significant role in logical decision making during project management. Different models of cost estimation are presented and employed to the date, but the models are application specific. In this paper, a three-phase hybrid approach is proposed to overcome the problem. In the first phase, features are selected using a combination of genetic algorithm and the perceptron neural network. In the second phase, impact factors are associated to each selected feature using multiple linear regression methods which act as coefficients of influence for each feature. In the last and the third phase, the feature weights are optimized by Imperialist Competitive Algorithm. To compare the proposed model for effort estimation with state-of-the-art models, three datasets are chosen as benchmark, namely COCOMO, Maxwell and Albrecht. The datasets are standard and publicly available for assessment. The experiments show promising results and average performance is improved by the proposed model for MMRE performance criterion on the datasets by 23%, 38% and 35%, respectively.
کلید واژگان
Software Development Effort EstimationMultiple Linear Regression (MLR)
Neural Network
Genetic Algorithm (GA)
Imperialist Competitive Algorithm (ICA)
Maxwell
Albrecht
COCOMO
شماره نشریه
1تاریخ نشر
2020-01-011398-10-11
ناشر
Semnan Universityسازمان پدید آورنده
Computer engineering department, Kerman branch, Islamic Azad University, Kerman, IranComputer engineering department, Bardsir branch, Islamic Azad University, Bardsir, Iran
Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran




