• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Nonlinear Analysis and Applications
    • Volume 11, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Nonlinear Analysis and Applications
    • Volume 11, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Hybrid Approach for Software Development Effort Estimation using Neural networks, Genetic Algorithm, Multiple Linear Regression and Imperialist Competitive Algorithm

    (ندگان)پدیدآور
    Khazaiepoor, MahdiKhatibi Bardsiri, AmidKeynia, Farshid
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    5.228 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Nowadays, effort estimation in software development is of great value and significance in project management. Accurate and appropriate cost estimation not only helps customers trust to invest but also has a significant role in logical decision making during project management. Different models of cost estimation are presented and employed to the date, but the models are application specific. In this paper, a three-phase hybrid approach is proposed to overcome the problem. In the first phase, features are selected using a combination of genetic algorithm and the perceptron neural network. In the second phase, impact factors are associated to each selected feature using multiple linear regression methods which act as coefficients of influence for each feature. In the last and the third phase, the feature weights are optimized by Imperialist Competitive Algorithm. To compare the proposed model for effort estimation with state-of-the-art models, three datasets are chosen as benchmark, namely COCOMO, Maxwell and Albrecht. The datasets are standard and publicly available for assessment. The experiments show promising results and average performance is improved by the proposed model for MMRE performance criterion on the datasets by 23%, 38% and 35%, respectively.
    کلید واژگان
    Software Development Effort Estimation
    Multiple Linear Regression (MLR)
    Neural Network
    Genetic Algorithm (GA)
    Imperialist Competitive Algorithm (ICA)
    Maxwell
    Albrecht
    COCOMO

    شماره نشریه
    1
    تاریخ نشر
    2020-01-01
    1398-10-11
    ناشر
    Semnan University
    سازمان پدید آورنده
    Computer engineering department, Kerman branch, Islamic Azad University, Kerman, Iran
    Computer engineering department, Bardsir branch, Islamic Azad University, Bardsir, Iran
    Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

    شاپا
    2008-6822
    URI
    https://dx.doi.org/10.22075/ijnaa.2020.4259
    https://ijnaa.semnan.ac.ir/article_4259.html
    https://iranjournals.nlai.ir/handle/123456789/322880

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب