• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Oil and Gas Science and Technology
    • Volume 7, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Oil and Gas Science and Technology
    • Volume 7, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of an Adaptive Neuro-fuzzy Inference System and Mathematical Rate of Penetration Models to Predicting Drilling Rate

    (ندگان)پدیدآور
    Yavari, HosseinSabah, MohammadKhosravanian, RassoulWood, David. A
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.536 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The rate of penetration (ROP) is one of the vital parameters which directly affects the drilling time and costs. There are various parameters that influence the drilling rate; they include weight on bit, rotational speed, mud weight, bit type, formation type, and bit hydraulic. Several approaches, including mathematical models and artificial intelligence have been proposed to predict the rate of penetration. Previous research has showed that artificial intelligence such as neural network and adaptive neuro-fuzzy inference system are superior to conventional methods in the prediction of drilling rate. On the other hand, many complicated analytical ROP models have also been developed during recent years that are able to predict drilling rate with a high degree of accuracy. Therefore, comparing different approaches to find the most accurate model and assess the conditions in which each model works well can be highly effective in reducing drilling time as well as drilling cost. In this study, Hareland-Rampersad (HR) model, Bourgoyne and Young (BY) model, and an adaptive-neuro-fuzzy inference system (ANFIS) are employed to predict the drilling rate in the South Pars gas field (SP) offshore of Iran, and their results are compared to find the best ROP-prediction model for each formation. A database covering the drilling parameters, sonic log data, and modular dynamic test data collected from several drilling sites in SP are used to construct the mentioned models for each formation. The results show that when a large amount of data is available, the ANFIS is more accurate than the other approaches in predicting drilling rate. In the case of ROP models, BY model works considerably better than HR model for the majority of the formations. However, in formations where some drilling parameters are constant, but formation strength is variable, HR model shows better prediction performance than BY model.
    کلید واژگان
    Rate of Penetration (ROP)
    ANFIS
    Bourgoyne and Young
    Hareland-Rampersad
    Simulated Annealing Algorithm (SAA)
    Petroleum Engineering – Drilling

    شماره نشریه
    3
    تاریخ نشر
    2018-07-01
    1397-04-10
    ناشر
    Petroleum University of Technology
    سازمان پدید آورنده
    M.S. Student of Petroleum Department of Amirkabir University of Technology, Tehran, Iran
    M.S. Student of Petroleum Department of Amirkabir University of Technology, Tehran, Iran
    Assistant Professor of Petroleum Department of Amirkabir University of Technology, Tehran, Iran
    DWA Energy Limited, Lincoln, United Kingdom

    شاپا
    2345-2412
    2345-2420
    URI
    https://dx.doi.org/10.22050/ijogst.2018.83374.1391
    http://ijogst.put.ac.ir/article_55716.html
    https://iranjournals.nlai.ir/handle/123456789/320306

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب