• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Plant Production
    • Volume 10, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Plant Production
    • Volume 10, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimizing plant traits to increase yield quality and quantity in tobacco using artificial neural network

    (ندگان)پدیدآور
    Salehzadeh, H.Gholipoor, M.Abbasdokht, H.Baradaran, M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    714.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    There are complex inter- and intra-relations between regressors (independent variables) andyield quantity (W) and quality (Q) in tobacco. For instance, nitrogen (N) increases W butdecreases Q; starch harms Q but soluble sugars promote it. The balance between (optimizationof) regressors is needed for simultaneous increase in W and Q components [higher potassium(K), medium nicotine and lower chloride (Cl) contents in cured leaf]. This study was aimed tooptimize 10 regressors (content of N and soluble sugars in root, stem and leaf, leaf nicotinecontent at flowering and nitrate reductase activity (NRA) at 3 phenological stages) for increasedW and Q components, using an artificial neural network (ANN). Two field experiments wereconducted to get diversified regressors, Q and W, using 2 N sources and 4 application patternsin Tirtash and Oromieh. Treatments and 2 locations produced a wide range of variation inregressors, W and Q components which is prerequisite of ANN. The results indicated thatconfiguration of 12 neurons in one hidden layer was the best for prediction. The obtainedoptimum values of regressors (1.64%, 2.12% and 1.04% N content, 4.32%, 13.04% and 9.54%soluble sugar content for leaf, stem and root, respectively; 2.31% nicotine content and NRA of13.11, 4.74 and 4.70 µmol.NO2.g-1.h-1 for pre-flowering, flowering and post-flowering stages,respectively) increased W by 3% accompanied by 4.75% K, 1.87% nicotine and 1.5% Clin cured leaf.
    کلید واژگان
    Artificial neural network
    Optimization
    Tobacco
    quality

    شماره نشریه
    1
    تاریخ نشر
    2016-01-01
    1394-10-11
    ناشر
    Gorgan University of Agricultural Sciences
    سازمان پدید آورنده
    PhD student, Department of Crop Sciences, Shahrood University, P.O. Box 36155-316, Shahrood, Iran.
    Faculty member, Department of Crop Sciences, Shahrood University, P.O. Box 36155-316, Shahrood, Iran.
    Faculty member, Department of Crop Sciences, Shahrood University, P.O. Box 36155-316, Shahrood, Iran
    Faculty member, Department of Crop Sciences, Shahrood University, P.O. Box 36155-316, Shahrood, Iran

    شاپا
    1735-6814
    1735-8043
    URI
    https://dx.doi.org/10.22069/ijpp.2016.2556
    http://ijpp.gau.ac.ir/article_2556.html
    https://iranjournals.nlai.ir/handle/123456789/315956

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب