• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Pharmaceutical Research
    • Volume 15, Special Issue
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Pharmaceutical Research
    • Volume 15, Special Issue
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Detecting Diseases in Medical Prescriptions Using Data Mining Tools and Combining Techniques

    (ندگان)پدیدآور
    Teimouri, MehdiFarzadfar, Farshadsoudi alamdari, mahsaHashemi Meshkini, AmirAdibi Alamdari, ParisaRezaei-Darzi, EhsanVarmaghani, Mehdizeynalabedini6, Aysan
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.152 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Data about the prevalence of communicable and non-communicable diseases, as one of the most important categories of epidemiological data, is used for interpreting health status of communities. This study aims to calculate the prevalence of outpatient diseases through the characterization of outpatient prescriptions. The data used in this study is collected from 1412 prescriptions for various types of diseases from which we have focused on the identification of ten diseases. In this study, data mining tools are used to identify diseases for which prescriptions are written. In order to evaluate the performances of these methods, we compare the results with Naïve method. Then, combining methods are used to improve the results. Results showed that Support Vector Machine, with an accuracy of 95.32%, shows better performance than the other methods. The result of Naive method, with an accuracy of 67.71%, is 20% worse than Nearest Neighbor method which has the lowest level of accuracy among the other classification algorithms. The results indicates that the implementation of data mining algorithms resulted in a good performance in characterization of outpatient diseases. These results can help to choose appropriate methods for the classification of prescriptions in larger scales.
    کلید واژگان
    Outpatient Diseases
    Medical Prescription
    Diagnosis
    Data mining
    Pharmacotherapy (Clinical Pharmacy)

    تاریخ نشر
    2016-03-01
    1394-12-11
    ناشر
    School of Pharmacy, Shahid Beheshti University of Medical Sciences
    سازمان پدید آورنده
    Department of Network Science and Technology, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
    Non-communicable disease Research Center, Endocrinology and Metabolism Population Science Institute, Tehran University of Medical Sciences, Tehran, Iran.
    Department of Network Science and Technology, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
    Department of Pharmacoeconomics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
    School of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
    Non-communicable disease Research Center, Endocrinology and Metabolism Population Science Institute, Tehran University of Medical Sciences, Tehran, Iran.
    Department of Pharmacoeconomics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
    School of Medicine,Orumia University of Medical Sciences,Orumia, Iran

    شاپا
    1735-0328
    1726-6890
    URI
    https://dx.doi.org/10.22037/ijpr.2016.1812
    http://ijpr.sbmu.ac.ir/article_1812.html
    https://iranjournals.nlai.ir/handle/123456789/313601

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب