• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Pharmaceutical Research
    • Volume 11, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Pharmaceutical Research
    • Volume 11, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Patterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis

    (ندگان)پدیدآور
    Zendehdel, RezvanMasoudi-Nejad, AliHosseini Shirazi, Farshad
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    697.6کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a sensitive human ovarian cell line, A2780, and its cisplatin-resistant derivative, A2780-cp. In this study FTIR method have been evaluated via the use of principal components analysis (PCA), ANN (artificial neuronal network) and LDA (linear discriminate analysis). FTIR spectroscopy on these cells in the range of 400-4000 cm-1 showed alteration in the secondary structure of proteins and a CH stretching vibration. We have found that the ANN models correctly classified more than 95% of the cell lines, while the LDA models with the same data sets could classify 85% of cases. In the process of different ranges of spectra, the best classification of data set in the range of 1000-2000 cm-1 was done using ANN model, while the data set between 2500-3000 cm-1 was more correctly classified with the LDA model. PCA of the spectral data also provide a good separation for representing the variety of cell line spectra. Our work supports the promise of ANN analysis of FTIR spectrum as a supervised powerful approach and PCA as unsupervised modeling for the development of automated methods to determine the resistant phenotype of cancer classification.
    کلید واژگان
    Drug resistant
    Fourier transform infrared
    Principle component analysis
    artificial neuronal network
    linear discriminate analysis
    Pattern recognition
    toxicology and Pharmacology

    شماره نشریه
    2
    تاریخ نشر
    2012-05-01
    1391-02-12
    ناشر
    School of Pharmacy, Shahid Beheshti University of Medical Sciences
    سازمان پدید آورنده
    Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Department of Toxicology and Pharmacology, school of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
    Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics and COE in Biomathematics, University of Tehran, Tehran, Iran
    Pharmaceutical Research Sciences Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

    شاپا
    1735-0328
    1726-6890
    URI
    https://dx.doi.org/10.22037/ijpr.2012.1141
    http://ijpr.sbmu.ac.ir/article_1141.html
    https://iranjournals.nlai.ir/handle/123456789/312802

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب