مقایسه روشهای نروفازی، شبکه عصبی و رگرسیون چند متغیره در پیشبینی برخی خصوصیات خاک (مطالعه موردی: استان گلستان)
(ندگان)پدیدآور
سرمدیان, فریدونتقی زاده مهرجردی, روح الهمحمد عسگری, حسیناکبرزاده, علینوع مدرک
Textزبان مدرک
فارسیچکیده
با توجه به مشکلات اندازهگیری مستقیم برخی از ویژگیهای خاک، در سالهای اخیر از روشهای غیر مستقیم برای برآورد این خصوصیات استفاده میشود. بدین منظور، در این پژوهش140 نمونه جمع آوری شده از منطقه گرگان مورد آزمایش قرار گرفته و فراوانی نسبی ذرات، کربن آلی، درصد رطوبت اشباع و آهک به عنوان ویژگیهای زودیافت و نقطه پژمردگی، ظرفیت زراعی، ظرفیت تبادل کاتیونی و وزن مخصوص ظاهری به عنوان ویژگیهای دیریافت اندازهگیری شدند. سپس کل دادهها به دو سری داده، شامل سری آموزش (80% دادهها) و سری ارزیابی (20% دادهها) تقسیم گردید. به منظور پیشبینی خصوصیات مذکور، از مدلهای نروفازی، شبکه عصبی مصنوعی و رگرسیون چند متغیره استفاده گردید. نتایج ارزیابی مدلها بر اساس شاخصهای ریشه مربعات خطا، میانگین خطا، خطای استاندارد نسبی و ضریب تبیین نشان داد که مدل نروفازی دارای بالاترین دقت در پیشبینی ویژگیهای خاک را دارا میباشد بطوریکه این مدل به میزان 34، 10، 78 و 5 درصد دقت پیشبینی ویژگیهای FC، PWP، CEC و Bd را به ترتیب، نسبت به روش رگرسیون خطی چندگانه افزایش داده است. بعد از این مدل، شبکههای عصبی مصنوعی نسبت به معادلات رگرسیونی کارائی بهتر داشته است.
کلید واژگان
خصوصیات خاکرگرسیون چند متغیره
شبکه عصبی مصنوعی
نروفازی
شماره نشریه
2تاریخ نشر
2011-01-211389-11-01
ناشر
دانشگاه تهرانUniversity of Tehran
شاپا
2008-479X2423-7833




