• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Algorithms and Computation
    • Volume 43, Issue 5
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Algorithms and Computation
    • Volume 43, Issue 5
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    کاهش رنگ تصاویر با شبکه‌های عصبی خودسامانده چندمرحله‌ای و ویژگی‌های افزونه

    (ندگان)پدیدآور
    Rasti, JavadMonajjemi, Seyyed AmirVafaei, Abbas
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    2.544 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohenen Self-Organizing Map Neural Network is employed to form an adaptive color reduction method. To enhance the performance of this method, we have used redundant features obtained by one-to-one functions from three main components of the color image (e.g. Red, Green and Blue channels). Exploiting these features will increase the color discrimination and details illustration ability of the network compared to the conventional approaches. This method leads to satisfactory results in image segmentation and especially in small object detection problems. It is also investigated that if the number of features in Kohenen network grows even by using non-deterministic one-to-one functions, the network revenue considerably improves. Moreover, we will study the effect of various adaptation algorithms in Kohenen network training stage. Again using a multi-stage color reduction procedure which employs both Kohenen neural networks and conventional vector quantization schemes improves the performance. Several experimental results are represented to simplify the comparison of different approaches.
    کلید واژگان
    Redundant Features
    Segmentation
    Vector Quantization
    Color Reduction
    Kohenen Self-Organizing Neural Networks

    شماره نشریه
    5
    تاریخ نشر
    2009-09-01
    1388-06-10
    ناشر
    University of Tehran

    شاپا
    2476-2776
    2476-2784
    URI
    https://jac.ut.ac.ir/article_7726.html
    https://iranjournals.nlai.ir/handle/123456789/296203

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب