نمایش مختصر رکورد

dc.contributor.authorMesrikhani, Amiren_US
dc.contributor.authorFarshi, Mohammaden_US
dc.contributor.authorIranfar, Behnamen_US
dc.date.accessioned1399-07-09T06:07:41Zfa_IR
dc.date.accessioned2020-09-30T06:07:41Z
dc.date.available1399-07-09T06:07:41Zfa_IR
dc.date.available2020-09-30T06:07:41Z
dc.date.issued2019-12-01en_US
dc.date.issued1398-09-10fa_IR
dc.date.submitted2020-02-29en_US
dc.date.submitted1398-12-10fa_IR
dc.identifier.citationMesrikhani, Amir, Farshi, Mohammad, Iranfar, Behnam. (2019). Minimum Spanning Tree of Imprecise Points Under $L_1$-metric. Journal of Algorithms and Computation, 51(2), 99-110.en_US
dc.identifier.issn2476-2776
dc.identifier.issn2476-2784
dc.identifier.urihttps://jac.ut.ac.ir/article_75187.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/296034
dc.description.abstractLet $S$ be a set of imprecise points that is represented by axis-aligned pairwise disjoint squares in the plane. A precise instance of $S$ is a set of points, one from each region of $S$. In this paper, we study the optimal minimum spanning tree (textit{OptMST}) problem on $S$. The textit{OptMST} problem looks for the precise instance of $S$ such that the weight of the MST in this instance, maximize (Max-MST) or minimize (Min-MST) between all precise instances of~$S$ under $L_1$-metric. We present a $(frac{3}{7})$-approximation algorithm for Max-MST. This is an improvement on the best-known approximation factor of $1/3$. If $S$ satisfies $k$-separability property (the distance between any pair of squares are at least $k.a_{max}$ where $a_{max}$ is the maximum length of the squares), the factor parameterizes to $frac{2k+3}{2k+7}$. We propose a new lower bound for Min-MST problem on $S$ under $L_1$-metric where $S$ contains unit squares and provide an approximation algorithm with $(1+2sqrt{2})$ asymptotic factor.en_US
dc.format.extent295
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Tehranen_US
dc.relation.ispartofJournal of Algorithms and Computationen_US
dc.subjectMinimum Spanning treeen_US
dc.subjectImprecise point seten_US
dc.subjectApproximation algorithmen_US
dc.titleMinimum Spanning Tree of Imprecise Points Under $L_1$-metricen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentYazd universityen_US
dc.contributor.departmentDepartment of Computer Science, Yazd University, Yazd, Iranen_US
dc.contributor.departmentDepartment of Computer Science, Yazd University, Yazd, Iranen_US
dc.citation.volume51
dc.citation.issue2
dc.citation.spage99
dc.citation.epage110


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد