Maximum Zagreb Indices Among All $p-$Quasi $k-$Cyclic Graphs
(ندگان)پدیدآور
Ashrafi, Ali RezaGhalavand, Aliنوع مدرک
Textزبان مدرک
Englishچکیده
vspace{0.2cm}Suppose $G$ is a simple and connected graph. The first and second Zagreb indices of $G$ are two degree-based graph invariants defined as $M_1(G) = sum_{v in V(G)}deg(v)^2$ and $M_2(G) = sum_{e=uv in E(G)}deg(u)deg(v)$, respectively. The graph $G$ is called $p-$quasi $k-$cyclic, if there exists a subset $S$ of vertices such that $|S| = p$, $G setminus S$ is $k-$cyclic and there is no a subset $S^prime$ of $V(G)$ such that $|S^prime|
کلید واژگان
$p-$quasi $k-$cyclic graphfirst Zagreb index
second Zagreb index
cyclomatic number
k-cyclic graph
شماره نشریه
2تاریخ نشر
2019-12-011398-09-10
ناشر
University of Tehranسازمان پدید آورنده
University of KashanUniversity of Kashan
شاپا
2476-27762476-2784




