نمایش مختصر رکورد

dc.contributor.authorDashti, Mohaddesehen_US
dc.contributor.authorDerhami, Valien_US
dc.contributor.authorEkhtiyari, Esfandiaren_US
dc.date.accessioned1399-07-09T06:04:29Zfa_IR
dc.date.accessioned2020-09-30T06:04:29Z
dc.date.available1399-07-09T06:04:29Zfa_IR
dc.date.available2020-09-30T06:04:29Z
dc.date.issued2014-03-01en_US
dc.date.issued1392-12-10fa_IR
dc.date.submitted2013-04-25en_US
dc.date.submitted1392-02-05fa_IR
dc.identifier.citationDashti, Mohaddeseh, Derhami, Vali, Ekhtiyari, Esfandiar. (2014). Yarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms. Journal of AI and Data Mining, 2(1), 73-78. doi: 10.22044/jadm.2014.187en_US
dc.identifier.issn2322-5211
dc.identifier.issn2322-4444
dc.identifier.urihttps://dx.doi.org/10.22044/jadm.2014.187
dc.identifier.urihttp://jad.shahroodut.ac.ir/article_187.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/294952
dc.description.abstractYarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is collected for cotton yarns. Then, the structure of the neural network is determined and its parameters are adjusted by back propagation method. The efficiency and accuracy of the neural model is measured based on percentage of error as well as coefficient determination. The obtained experimental results show that the neural model could predicate the tenacity with less than 3.5% error. Afterwards, utilizing genetic algorithms, a new method is proposed for optimal determination of input values in yarn production to reach the desired tenacity. We conducted several experiments for different ranges with various production cost functions. The proposed approach could find the best input values to reach the desired tenacity considering the production costs.en_US
dc.format.extent399
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahrood University of Technologyen_US
dc.relation.ispartofJournal of AI and Data Miningen_US
dc.relation.isversionofhttps://dx.doi.org/10.22044/jadm.2014.187
dc.subjectArtificial Neural Networken_US
dc.subjectGenetic Algorithmen_US
dc.subjectYarn tenacityen_US
dc.subjectmodelingen_US
dc.titleYarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithmsen_US
dc.typeTexten_US
dc.typeResearch/Original/Regular Articleen_US
dc.contributor.departmentTextile Engineering Department, Yazd Universityen_US
dc.contributor.departmentElectrical and computer engineering department, Yazd Universityen_US
dc.contributor.departmentTextile Engineering Department, Yazd Universityen_US
dc.citation.volume2
dc.citation.issue1
dc.citation.spage73
dc.citation.epage78
nlai.contributor.orcid0000-0003-4691-0643


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد