• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 7, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 7, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Feature Engineering in Persian Dependency Parser

    (ندگان)پدیدآور
    Lazemi, S.Ebrahimpour-komleh, H.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1006.کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Note
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Dependency parser is one of the most important fundamental tools in the natural language processing, which extracts structure of sentences and determines the relations between words based on the dependency grammar. The dependency parser is proper for free order languages, such as Persian. In this paper, data-driven dependency parser has been developed with the help of phrase-structure parser for Persian. The defined feature space in each parser is one of the important factors in its success. Our goal is to generate and extract appropriate features to dependency parsing of Persian sentences. To achieve this goal, new semantic and syntactic features have been defined and added to the MSTParser by stacking method. Semantic features are obtained by using word clustering algorithms based on syntagmatic analysis and syntactic features are obtained by using the Persian phrase-structure parser and have been used as bit-string. Experiments have been done on the Persian Dependency Treebank (PerDT) and the Uppsala Persian Dependency Treebank (UPDT). The results indicate that the definition of new features improves the performance of the dependency parser for the Persian. The achieved unlabeled attachment score for PerDT and UPDT are 89.17% and 88.96% respectively.
    کلید واژگان
    Dependency Parser
    Phrase-structure parser
    MSTParser
    Stacking
    Persian
    H.3.8. Natural Language Processing

    شماره نشریه
    3
    تاریخ نشر
    2019-07-01
    1398-04-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of Computer Eng., University of Kashan, Kashan, Iran.
    Department of Computer Eng., University of Kashan, Kashan, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2018.6066.1720
    http://jad.shahroodut.ac.ir/article_1188.html
    https://iranjournals.nlai.ir/handle/123456789/294924

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب