• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 7, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 7, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification of Cement Rotary Kiln in Noisy Condition using Takagi-Sugeno Neuro-fuzzy System

    (ندگان)پدیدآور
    Moradkhani, N.Teshnehlab, M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.787 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Cement rotary kiln is the main part of cement production process that have always attracted many researchers' attention. But this complex nonlinear system has not been modeled efficiently which can make an appropriate performance specially in noisy condition. In this paper Takagi-Sugeno neuro-fuzzy system (TSNFS) is used for identification of cement rotary kiln, and gradient descent (GD) algorithm is applied for tuning the parameters of antecedent and consequent parts of fuzzy rules. In addition, the optimal inputs of the system are selected by genetic algorithm (GA) to achieve less complexity in fuzzy system. The data related to Saveh White Cement (SWC) factory is used in simulations. The Results demonstrate that the proposed identifier has a better performance in comparison with neural and fuzzy models have presented earlier for the same data. Furthermore, in this paper TSNFS is evaluated in noisy condition which had not been worked out before in related researches. Simulations show that this model has a proper performance in different noisy condition.
    کلید واژگان
    Cement Rotary Kiln
    Takagi-Sugeno Fuzzy System
    Featuer Selection
    Noisy Condition
    H.6.2.2. Fuzzy set

    شماره نشریه
    3
    تاریخ نشر
    2019-07-01
    1398-04-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Electrical Engineering Department, K.N. Toosi University of Technology, Tehran, Iran.
    Electrical Engineering Department, K.N. Toosi University of Technology, Tehran, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2018.5295.1638
    http://jad.shahroodut.ac.ir/article_1183.html
    https://iranjournals.nlai.ir/handle/123456789/294915

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب