• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 8, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 8, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    VHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine

    (ندگان)پدیدآور
    Kakooei, M.Baleghi, Y.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    2.276 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial features are fused into a Heterogeneous Feature Map to train the classifier. Evaluation database classes are impervious surface, building, low vegetation, tree, car, and background. The proposed method is implemented on Google Earth Engine. The method consists of several levels. First, Principal Component Analysis is applied to vegetation indexes to find maximum separable color space between vegetation and non-vegetation area. Gray Level Co-occurrence Matrix is computed to provide texture information as spatial features. Several Random Forests are trained with automatically selected train dataset. Several spatial operators follow the classification to refine the result. Leaf-Less-Tree feature is used to solve the underestimation problem in tree detection. Area, major and, minor axis of connected components are used to refine building and car detection. Evaluation shows significant improvement in tree, building, and car accuracy. Overall accuracy and Kappa coefficient are appropriate.
    کلید واژگان
    VHR Semantic labeling
    Spatial feature
    Google Earth Engine
    GLCM
    Random Forest

    شماره نشریه
    3
    تاریخ نشر
    2020-07-01
    1399-04-11
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Electrical & Computer Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
    Electrical & Computer Engineering Department, Babol Noshirvani University of Technology, Babol, Iran

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2020.8252.1964
    http://jad.shahroodut.ac.ir/article_1788.html
    https://iranjournals.nlai.ir/handle/123456789/294906

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب