• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 6, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 6, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impact of Patients’ Gender on Parkinson’s disease using Classification Algorithms

    (ندگان)پدیدآور
    Abdar, M.Zomorodi-Moghadam, M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    915.3کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In this paper the accuracy of two machine learning algorithms including SVM and Bayesian Network are investigated as two important algorithms in diagnosis of Parkinson's disease. We use Parkinson's disease data in the University of California, Irvine (UCI). In order to optimize the SVM algorithm, different kernel functions and C parameters have been used and our results show that SVM with C parameter (C-SVM) with average of 99.18% accuracy with Polynomial Kernel function in testing step, has better performance compared to the other Kernel functions such as RBF and Sigmoid as well as Bayesian Network algorithm. It is also shown that ten important factors in SVM algorithm are Jitter (Abs), Subject #, RPDE, PPE, Age, NHR, Shimmer APQ 11, NHR, Total-UPDRS, Shimmer (dB) and Shimmer. We also prove that the accuracy of our proposed C-SVM and RBF approaches is in direct proportion to the value of C parameter such that with increasing the amount of C, accuracy in both Kernel functions is increased. But unlike Polynomial and RBF, Sigmoid has an inverse relation with the amount of C. Indeed, by using these methods, we can find the most effective factors common in both genders (male and female). To the best of our knowledge there is no study on Parkinson's disease for identifying the most effective factors which are common in both genders.
    کلید واژگان
    data mining
    Parkinson's disease
    SVM algorithm
    Bayesian Network algorithm
    C-SVM algorithm
    D. Data

    شماره نشریه
    2
    تاریخ نشر
    2018-07-01
    1397-04-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    School of Computer Science & Engineering, The University of Aizu, Aizu-Wakamatsu, Japan.
    Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2017.4673.1555
    http://jad.shahroodut.ac.ir/article_1063.html
    https://iranjournals.nlai.ir/handle/123456789/294887

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب