• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 6, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 6, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-Focus Image Fusion in DCT Domain using Variance and Energy of Laplacian and Correlation Coefficient for Visual Sensor Networks

    (ندگان)پدیدآور
    Amin-Naji, M.Aghagolzadeh, A.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.205 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The purpose of multi-focus image fusion is gathering the essential information and the focused parts from the input multi-focus images into a single image. These multi-focus images are captured with different depths of focus of cameras. A lot of multi-focus image fusion techniques have been introduced using considering the focus measurement in the spatial domain. However, the multi-focus image fusion processing is very time-saving and appropriate in discrete cosine transform (DCT) domain, especially when JPEG images are used in visual sensor networks (VSN). So the most of the researchers are interested in focus measurements calculation and fusion processes directly in DCT domain. Accordingly, many researchers developed some techniques which are substituting the spatial domain fusion process with DCT domain fusion process. Previous works in DCT domain have some shortcomings in selection of suitable divided blocks according to their criterion for focus measurement. In this paper, calculation of two powerful focus measurements, energy of Laplacian (EOL) and variance of Laplacian (VOL), are proposed directly in DCT domain. In addition, two other new focus measurements which work by measuring correlation coefficient between source blocks and artificial blurred blocks are developed completely in DCT domain. However, a new consistency verification method is introduced as a post-processing, improving the quality of fused image significantly. These proposed methods reduce the drawbacks significantly due to unsuitable block selection. The output images quality of our proposed methods is demonstrated by comparing the results of proposed algorithms with the previous algorithms.
    کلید واژگان
    Image Fusion
    Multi-Focus
    Visual Sensor Networks
    discrete cosine transform
    Variance and Energy of Laplacian
    H.5. Image Processing and Computer Vision

    شماره نشریه
    2
    تاریخ نشر
    2018-07-01
    1397-04-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Faculty of Electrical & Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran.
    Faculty of Electrical & Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2017.5169.1624
    http://jad.shahroodut.ac.ir/article_1065.html
    https://iranjournals.nlai.ir/handle/123456789/294884

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب