نمایش مختصر رکورد

dc.contributor.authorPatil, V.en_US
dc.contributor.authorSarode, T.en_US
dc.date.accessioned1399-07-09T06:04:15Zfa_IR
dc.date.accessioned2020-09-30T06:04:15Z
dc.date.available1399-07-09T06:04:15Zfa_IR
dc.date.available2020-09-30T06:04:15Z
dc.date.issued2019-04-01en_US
dc.date.issued1398-01-12fa_IR
dc.date.submitted2018-01-26en_US
dc.date.submitted1396-11-06fa_IR
dc.identifier.citationPatil, V., Sarode, T.. (2019). Compressed Image Hashing using Minimum Magnitude CSLBP. Journal of AI and Data Mining, 7(2), 287-297. doi: 10.22044/jadm.2018.6639.1787en_US
dc.identifier.issn2322-5211
dc.identifier.issn2322-4444
dc.identifier.urihttps://dx.doi.org/10.22044/jadm.2018.6639.1787
dc.identifier.urihttp://jad.shahroodut.ac.ir/article_1191.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/294878
dc.description.abstractImage hashing allows compression, enhancement or other signal processing operations on digital images which are usually acceptable manipulations. Whereas, cryptographic hash functions are very sensitive to even single bit changes in image. Image hashing is a sum of important quality features in quantized form. In this paper, we proposed a novel image hashing algorithm for authentication which is more robust against various kind of attacks. In proposed approach, a short hash code is obtained by using minimum magnitude Center Symmetric Local Binary Pattern (CSLBP). The desirable discrimination power of image hash is maintained by modified Local Binary Pattern(LBP) based edge weight factor generated from gradient image. The proposed hashing method extracts texture features using the Center Symmetric Local Binary Pattern (CSLBP). The discrimination power of hashing is increased by weight factor during CSLBP histogram construction. The generated histogram is compressed to 1/4 of the original histogram by minimum magnitude CSLBP. The proposed method, has a twofold advantage, first is a small length and second is acceptable discrimination power. Experimental results are demonstrated by hamming distance, TPR, FPR and ROC curves. Therefore the proposed method successfully does a fair classification of content preserving and content changing images.en_US
dc.format.extent1498
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahrood University of Technologyen_US
dc.relation.ispartofJournal of AI and Data Miningen_US
dc.relation.isversionofhttps://dx.doi.org/10.22044/jadm.2018.6639.1787
dc.subjectAuthenticationen_US
dc.subjectCSLBPen_US
dc.subjectLBPen_US
dc.subjectHashingen_US
dc.subjectTamperingen_US
dc.subjectH.5. Image Processing and Computer Visionen_US
dc.titleCompressed Image Hashing using Minimum Magnitude CSLBPen_US
dc.typeTexten_US
dc.typeReview Articleen_US
dc.contributor.departmentDepartment of Computer Engineering, Thadomal Shahani Engineering College, Mumbai University, Mumbai, India.en_US
dc.contributor.departmentDepartment of Computer Engineering, Thadomal Shahani Engineering College, Mumbai University, Mumbai, India.en_US
dc.citation.volume7
dc.citation.issue2
dc.citation.spage287
dc.citation.epage297


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد