• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 8, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 8, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

    (ندگان)پدیدآور
    Kurmanji, M.Ghaderi, F.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.469 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total frames of a video. So far, both 2D and 3D convolutional neural networks have been used to manipulate the temporal dynamics of the video frames. 3D CNNs can extract the changes in the consecutive frames and tend to be more suitable for the video classification task, however, they usually need more time. On the other hand, by using techniques like tiling it is possible to aggregate all the frames in a single matrix and preserve the temporal and spatial features. This way, using 2D CNNs, which are inherently simpler than 3D CNNs can be used to classify the video instances. In this paper, we compared the application of 2D and 3D CNNs for representing temporal features and classifying hand gesture sequences. Additionally, providing a two-stage two-stream architecture, we efficiently combined color and depth modalities and 2D and 3D CNN predictions. The effect of different types of augmentation techniques is also investigated. Our results confirm that appropriate usage of 2D CNNs outperforms a 3D CNN implementation in this task.
    کلید واژگان
    Convolutional Neural Networks
    deep learning
    Hand gesture recognition
    Video Classification
    H.3. Artificial Intelligence

    شماره نشریه
    2
    تاریخ نشر
    2020-04-01
    1399-01-13
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Human Computer Interaction Lab., Electrical and Computer Engineering Department, Tarbiat Modares University, Tehran, Iran.
    Human Computer Interaction Lab., Electrical and Computer Engineering Department, Tarbiat Modares University, Tehran, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2019.7903.1929
    http://jad.shahroodut.ac.ir/article_1616.html
    https://iranjournals.nlai.ir/handle/123456789/294862

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب