• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 4, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 4, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bridging the semantic gap for software effort estimation by hierarchical feature selection techniques

    (ندگان)پدیدآور
    Beiranvand, S.Z.Chahooki, M.A.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.121 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before software project contract. Due to the uncertain nature of development estimates and in order to increase the accuracy, researchers recently have focused on machine learning techniques. Choosing the most effective features to achieve higher accuracy in machine learning is crucial. In this paper, for narrowing the semantic gap in SDEE, a hierarchical method of filter and wrapper Feature Selection (FS) techniques and a fused measurement criteria are developed in a two-phase approach. In the first phase, two stage filter FS methods provide start sets for wrapper FS techniques. In the second phase, a fused criterion is proposed for measuring accuracy in wrapper FS techniques. Experimental results show the validity and efficiency of the proposed approach for SDEE over a variety of standard datasets.
    کلید واژگان
    Software Development Effort Estimation (SDEE)
    Software Cost Estimation (SCE)
    Machine learning (ML)
    Hierarchical Feature Selection (FS)
    C. Software/Software Engineering

    شماره نشریه
    2
    تاریخ نشر
    2016-07-01
    1395-04-11
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Electrical & Computer Engineering Department, Yazd University, Yazd, Iran.
    Electrical & Computer Engineering Department, Yazd University, Yazd, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.5829/idosi.JAIDM.2016.04.02.04
    http://jad.shahroodut.ac.ir/article_630.html
    https://iranjournals.nlai.ir/handle/123456789/294835

    Related items

    Showing items related by title, author, creator and subject.

    • Software Architecture Tools- A Classification and Survey with Recommendation for an Organization 

      Rashidi, Hassan؛ Rashidi, Zahra؛ Rashidi, Zeynab (University of Isfahan & Iranian Society of Cryptology, 2023-07-01)
      With the rise of cloud infrastructures, micro-services, frameworks, and reference architectures for every conceivable domain and quality attribute, someone might think that architectural knowledge is hardly needed anymore. ...

    • Selecting an Architecture Style Using Fuzzy Cubic Spline on in Style-based Systems 

      Hasannejad Marzooni, Hamidreza؛ Motameni, Homayun؛ Ebrahimnejad, Ali (Sari Branch, Islamic Azad University, 2020-02-01)
      An architecture shows to what extent a system meets the needs of the stakeholders, so designing a desired architecture produces very high-quality software tailored to the needs of the stakeholders. Thus, finding a software ...

    • ارزیابی میزان خطای محاسبه‌ی دز نرم‌افزار طراحی درمان با استفاده از فانتوم جامد Anthropomorphic 

      ویدا رضایی؛ داریوش شهبازی گهرویی؛ شهرام منادی؛ محسن صائب (دانشگاه علوم پزشکی اصفهان, 2016-10-28)

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب