• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 3, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 3, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Web pages ranking algorithm based on reinforcement learning and user feedback

    (ندگان)پدیدآور
    Derhami, V.Paksima, J.Khajah, H.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    988.5کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement learning and user`s feedback called RL3F are considered. In the proposed algorithm, the ranking system has been considered to be the agent of learning system and selecting documents to display to the user is as the agents' action. The reinforcement signal in the system is calculated according to a user`s clicks on documents. Action-value values of the proposed algorithm are computed for each feature. In each learning cycle, the documents are sorted out for the next query, and according to the document in the ranked list, documents are selected at random to show the user. Learning process continues until the training is completed. LETOR3 benchmark is used to evaluate the proposed method. Evaluation results indicated that the proposed method is more effective than other methods mentioned for comparison in this paper. The superiority of the proposed algorithm is using several features of document and user`s feedback simultaneously.
    کلید واژگان
    Search Engine
    Ranking
    Reinforcement learning
    User feedback
    Web documents
    G.4. Information Storage and Retrieval

    شماره نشریه
    2
    تاریخ نشر
    2015-07-01
    1394-04-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    School of Electrical and Computer Engineering, Yazd University, Yazd, Iran.
    Department of Engineering, Payame Noor Yazd University, Yazd, Iran.
    Department of Engineering, Science & Art University, Yazd, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.5829/idosi.JAIDM.2015.03.02.05
    http://jad.shahroodut.ac.ir/article_439.html
    https://iranjournals.nlai.ir/handle/123456789/294824

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب