• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 3, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 3, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    IRDDS: Instance reduction based on Distance-based decision surface

    (ندگان)پدیدآور
    Hamidzadeh, J.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    913.5کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In instance-based learning, a training set is given to a classifier for classifying new instances. In practice, not all information in the training set is useful for classifiers. Therefore, it is convenient to discard irrelevant instances from the training set. This process is known as instance reduction, which is an important task for classifiers since through this process the time for classification or training could be reduced. Instance-based learning methods are often confronted with the difficulty of choosing the instances which must be stored to be used during an actual test. Storing too many instances may result in large memory requirements and slow execution speed. In this paper, first, a Distance-based Decision Surface (DDS) is proposed which is used as a separating surface between the classes, then an instance reduction method, which is based on the DDS surface is proposed, namely IRDDS (Instance Reduction based on Distance-based Decision Surface). Using the DDS surface with Genetic algorithm selects a reference set for classification. IRDDS selects the most representative instances, satisfying both following objectives: high accuracy and reduction rates. The performance of IRDDS has been evaluated on real world data sets from UCI repository by the 10-fold cross-validation method. The results of the experiments are compared with some state-of-the-art methods, which show the superiority of the proposed method over the surveyed literature, in terms of both classification accuracy and reduction percentage.
    کلید واژگان
    Instance Reduction (IR)
    Distance-based Decision Surface (DDS)
    Instance-based Learning (IL)
    Support Vector Machine (SVM)
    Genetic Algorithm (GA)
    H.6. Pattern Recognition

    شماره نشریه
    2
    تاریخ نشر
    2015-07-01
    1394-04-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Faculty of Computer Engineering & Information Technology, Sadjad University of Technology, Mashhad, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.5829/idosi.JAIDM.2015.03.02.01
    http://jad.shahroodut.ac.ir/article_497.html
    https://iranjournals.nlai.ir/handle/123456789/294820

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب