• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 1, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 1, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamic anomaly detection by using incremental approximate PCA in AODV-based MANETs

    (ندگان)پدیدآور
    Alikhani, MeysamAhmadi Livani, Mohammad
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    676.3کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Note
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Mobile Ad-hoc Networks (MANETs) by contrast of other networks have more vulnerability because of having nature properties such as dynamic topology and no infrastructure. Therefore, a considerable challenge for these networks, is a method expansion that to be able to specify anomalies with high accuracy at network dynamic topology alternation. In this paper, two methods proposed for dynamic anomaly detection in MANETs those named IPAD and IAPAD. The anomaly detection procedure consists three main phases: Training, Detection and Updating in these methods. In the IPAD method, to create the normal profile, we use the normal feature vectors and principal components analysis, in the training phase. In detection phase, during each time window, anomaly feature vectors based on their projection distance from the first global principal component specified. In updating phase, at end of each time window, normal profile updated by using normal feature vectors in some previous time windows and increasing principal components analysis. IAPAD is similar to IPAD method with a difference that each node use approximate first global principal component to specify anomaly feature vectors. In addition, normal profile will updated by using approximate singular descriptions in some previous time windows. The simulation results by using NS2 simulator for some routing attacks show that average detection rate and average false alarm rate in IPAD method is 95.14% and 3.02% respectively, and in IAPAD method is 94.20% and 2.84% respectively.
    کلید واژگان
    MANETs
    Dynamic Anomaly Detection
    Routing attacks
    Incremental Principal Component Analyses

    شماره نشریه
    2
    تاریخ نشر
    2013-07-01
    1392-04-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Faculty of Electrical and Computer Engineering Tarbiat Modares University
    Faculty of Electrical and Computer Engineering Tarbiat Modares Univercity

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2013.100
    http://jad.shahroodut.ac.ir/article_100.html
    https://iranjournals.nlai.ir/handle/123456789/294807

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب