• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 7, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 7, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks

    (ندگان)پدیدآور
    Torkaman, A.Safabakhsh, R.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.284 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope with the uncertainty existing in these games, we design a Bayesian network whose parameters are learned from an unlabeled game-logs dataset; so it does not require a human expert's knowledge. We evaluate our model on StarCraft which is considered as a unified test-bed in this domain. The model is compared with that proposed by Synnaeve and Bessiere. Experimental results on recorded games of human players show that the proposed model can predict the opponent's future decisions more effectively. Using this model, it is possible to create an adaptive game intelligence algorithm applicable to RTS games, where the concept of build order (the order of building construction) exists.
    کلید واژگان
    Bayesian Network
    Opponent modeling
    Real-Time Strategy games
    StarCraft
    H.3.2.6. Games and infotainment

    شماره نشریه
    1
    تاریخ نشر
    2019-01-01
    1397-10-11
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Computer Engineering Department, Amirkabir University of Technology, Tehran, Iran.
    Amirkabir University of Technology

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2018.6932.1815
    http://jad.shahroodut.ac.ir/article_1266.html
    https://iranjournals.nlai.ir/handle/123456789/294787

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب