• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 7, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 7, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Using Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach

    (ندگان)پدیدآور
    Shamsollahi, M.Badiee, A.Ghazanfari, M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.034 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descriptive and predictive techniques of data mining that aims to aid specialists in the healthcare system to effectively predict patients with Coronary Artery Disease (CAD). To achieve this objective, some clustering and classification techniques are used. First, the number of clusters are determined using clustering indexes. Next, some types of decision tree methods and Artificial Neural Network (ANN) are applied to each cluster in order to predict CAD patients. Finally, results obtained show that the C&RT decision tree method performs best on all data used in this study with 0.074 error. All data used in this study are real and are collected from a heart clinic database.
    کلید واژگان
    data mining
    coronary heart disease
    Clustering
    Classification
    decision tree
    G.3.9. Database Applications

    شماره نشریه
    1
    تاریخ نشر
    2019-01-01
    1397-10-11
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Industrial Engineering Department, University of Science & Technology, Tehran, Iran.
    Industrial Engineering Department, University of Science & Technology, Tehran, Iran.
    Industrial Engineering Department, University of Science & Technology, Tehran, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2017.4992.1599
    http://jad.shahroodut.ac.ir/article_1126.html
    https://iranjournals.nlai.ir/handle/123456789/294779

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب