• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 6, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 6, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Grouping Objects to Homogeneous Classes Satisfying Requisite Mass

    (ندگان)پدیدآور
    Manteqipour, M.Ghaffari Hadigheh, A.R.Mahmoodvand, R.Safari, A.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.117 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Grouping datasets plays an important role in many scientific researches. Depending on data features and applications, different constrains are imposed on groups, while having groups with similar members is always a main criterion. In this paper, we propose an algorithm for grouping the objects with random labels, nominal features having too many nominal attributes. In addition, the size constraint on groups is necessary. These conditions lead to a mixed integer optimization problem which is not convex nor linear. It is an NP-hard problem and exact solution methods are computationally costly. Our motivation to solve such a problem comes along with grouping insurance data which is essential for fair pricing. The proposed algorithm includes two phases. First, we rank random labels using fuzzy numbers. Afterwards, an adjusted K-means algorithm is used to produce homogenous groups satisfying a cluster size constraint. Fuzzy numbers are used to compare random labels, in both observed values and their chance of occurrence. Moreover, an index is defined to find the similarity of multi-valued attributes without perfect information with those accompanied with perfect information. Since all ranks are scaled into the interval [0,1], the result of ranking random labels does not need rescaling techniques. In the adjusted K-means algorithm, the optimum number of clusters is found using coefficient of variation instead of Euclidean distance. Experiments demonstrate that our proposed algorithm produces fairly homogenous and significantly different groups having requisite mass.
    کلید واژگان
    Classification
    Clustering
    Fuzzy numbers
    Homogenous groups
    k_Means algorithm
    H.6.4. Clustering

    شماره نشریه
    1
    تاریخ نشر
    2018-03-01
    1396-12-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.
    Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.
    Department of Statistics, Bu-Ali Sina University, Hamedan, Iran.
    Insurance Research Center (Affiliated to the central insurance of Iran), Tehran, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2017.988
    http://jad.shahroodut.ac.ir/article_988.html
    https://iranjournals.nlai.ir/handle/123456789/294770

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب