• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 6, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 6, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Intrusion Detection based on a Novel Hybrid Learning Approach

    (ندگان)پدیدآور
    khalvati, L.Keshtgary, M.Rikhtegar, N.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    876.5کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper is generating an efficient training dataset. To exploit the strength of clustering and feature selection, an intensive focus on intrusion detection combines the two, so the proposed method is using these techniques too. At first, a new training dataset is created by K-Medoids clustering and Selecting Feature using SVM method. After that, Naïve Bayes classifier is used for evaluating. The proposed method is compared with another mentioned hybrid algorithm and also 10-fold cross validation. Experimental results based on KDD CUP'99 dataset show that the proposed method has better accuracy, detection rate and also false alarm rate than others.
    کلید واژگان
    Intrusion Detection System (IDS)
    K-Medoids
    Feature Selection
    Naïve Bayes
    Hybrid learning approach
    C.1. General

    شماره نشریه
    1
    تاریخ نشر
    2018-03-01
    1396-12-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of Computer & Information Technology, Shiraz University of Technology, Shiraz, Iran.
    Department of Computer & Information Technology, Shiraz University of Technology, Shiraz, Iran.
    Department of Computer & Information Technology, Shiraz University of Technology, Shiraz, Iran..

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2017.979
    http://jad.shahroodut.ac.ir/article_979.html
    https://iranjournals.nlai.ir/handle/123456789/294769

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب