نمایش مختصر رکورد

dc.contributor.authorImani, Maryamen_US
dc.contributor.authorGhassemian, Hassanen_US
dc.date.accessioned1399-07-09T06:03:45Zfa_IR
dc.date.accessioned2020-09-30T06:03:45Z
dc.date.available1399-07-09T06:03:45Zfa_IR
dc.date.available2020-09-30T06:03:45Z
dc.date.issued2015-03-01en_US
dc.date.issued1393-12-10fa_IR
dc.date.submitted2015-01-25en_US
dc.date.submitted1393-11-05fa_IR
dc.identifier.citationImani, Maryam, Ghassemian, Hassan. (2015). Feature reduction of hyperspectral images: Discriminant analysis and the first principal component. Journal of AI and Data Mining, 3(1), 1-9. doi: 10.5829/idosi.JAIDM.2015.03.01.01en_US
dc.identifier.issn2322-5211
dc.identifier.issn2322-4444
dc.identifier.urihttps://dx.doi.org/10.5829/idosi.JAIDM.2015.03.01.01
dc.identifier.urihttp://jad.shahroodut.ac.ir/article_385.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/294719
dc.description.abstractWhen the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has not the limitation of linear discriminant analysis (LDA) in the number of extracted features. In DA-PC1, the dominant structure of distribution is preserved by PC1 and the class separability is increased by DA. The experimental results show the good performance of DA-PC1 compared to some state-of-the-art feature extraction methods.en_US
dc.format.extent783
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahrood University of Technologyen_US
dc.relation.ispartofJournal of AI and Data Miningen_US
dc.relation.isversionofhttps://dx.doi.org/10.5829/idosi.JAIDM.2015.03.01.01
dc.subjectDiscriminant analysisen_US
dc.subjectPrincipal componenten_US
dc.subjectFeature reductionen_US
dc.subjectHyperspectralen_US
dc.subjectClassificationen_US
dc.subjectH.6.3.2. Feature evaluation and selectionen_US
dc.titleFeature reduction of hyperspectral images: Discriminant analysis and the first principal componenten_US
dc.typeTexten_US
dc.typeResearch/Original/Regular Articleen_US
dc.contributor.departmentFaculty of Electrical and Computer Engineering, Tarbiat Modares Universityen_US
dc.contributor.departmentFaculty of Electrical and Computer Engineering, Tarbiat Modares Universityen_US
dc.citation.volume3
dc.citation.issue1
dc.citation.spage1
dc.citation.epage9


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد