• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advances in Environmental Health Research
    • Volume 8, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advances in Environmental Health Research
    • Volume 8, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The modeling and prediction of the quality of the groundwater resources in Tuyserkan plain using the optimized artificial neural network

    (ندگان)پدیدآور
    ParsiMehr, MohamadShayesteh, KamranGodini, Kazem
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.041 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Tuyserkan plain is an important agricultural plain located in Hamadan province, Iran. Despite the severe decline of the water levels in aquifers, the quality of the plain has not been evaluated in recent years. The present study aimed to analyze the data of 15 wells during 12 years to evaluate the quality of groundwater in this area using the Wilcox diagram for the aquifer. The electrical conductivity (EC) of the plain was interpolated using the Kriging method to evaluate its spatial distribution since this parameter has caused a decline in the quality of the groundwater in the plain. According to the findings, the EC value was higher in the eastern parts of the plain and Tuyserkan city, which was described as the spatial distribution of the parameter. The Pearson's correlation-coefficient was used to assess the correlations between EC and other parameters. To predict and model the EC value, multi-layer perceptron artificial neural network (MLP-ANN) were used. According to the results of the Pearson's correlation-coefficient, the reduced number of the data led to the decreased expenditures of the experiments in obtaining the input data. The third model was finally obtained with the lowest number of the input parameters, low error, and high correlations between the predicted and actual data. In this model, two input parameters and five neurons were obtained in a hidden layer (R: 0.997, mean: 8.634, NRMSE: 0.05) using the momentum and hyperbolic tangent functions, indicating the high potential of MLP-ANNs in the prediction and modeling of groundwater quality.
    کلید واژگان
    Artificial intelligence
    environmental assessment
    Environmental pollution
    Groundwater pollution

    شماره نشریه
    2
    تاریخ نشر
    2020-04-01
    1399-01-13
    ناشر
    Kurdistan University of Medical Sciences
    سازمان پدید آورنده
    Department of Environmental Sciences, Faculty of Natural Resources and Environment, Malayer University, Malayer, Hamedan, Iran
    Department of Environmental Sciences, Faculty of Natural Resources and Environment, Malayer University, Malayer, Hamedan, Iran
    Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran

    شاپا
    2676-3478
    2345-3990
    URI
    https://dx.doi.org/10.22102/jaehr.2020.210891.1150
    http://jaehr.muk.ac.ir/article_108123.html
    https://iranjournals.nlai.ir/handle/123456789/294385

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب