• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Computational Applied Mechanics
    • Volume 51, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Computational Applied Mechanics
    • Volume 51, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A new technique for bearing fault detection in the time-frequency domain

    (ندگان)پدیدآور
    Attaran, BehroozGhanbarzadeh, AfshinMoradi, Shapour
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    579.7کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This paper presents a new Fast Kurtogram Method in the time-frequency domain using novel types of statistical features instead of the kurtosis. For this study, the problem of four classes for Bearing Fault Detection is investigated using various statistical features. This research is conducted in four stages. At first, the stability of each feature for each fault mode is investigated. Then, resistance to load changes as well as failure growth is studied. In the end, the resolution and fault detection for each feature using comparison with a determined pattern and the coherence rate is calculated. From the above results, the best feature that is both resistant and repeatable to different variations, as well as having suitable accuracy of detection and resolution, is selected. It is found that kurtosis feature is not in a good condition in comparison with other statistical features such as harmmean and median. This approach increases the fault identification accuracy significantly.
    کلید واژگان
    Fast Kurtogram
    Bearing fault detection
    Statistical features
    Time-Frequency Domain

    شماره نشریه
    1
    تاریخ نشر
    2020-06-01
    1399-03-12
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Mechanical Engineering Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran
    Mechanical Engineering Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran
    Mechanical Engineering Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran

    شاپا
    2423-6713
    2423-6705
    URI
    https://dx.doi.org/10.22059/jcamech.2019.282042.399
    https://jcamech.ut.ac.ir/article_76987.html
    https://iranjournals.nlai.ir/handle/123456789/286159

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب