• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Chemical and Petroleum Engineering
    • Volume 53, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Chemical and Petroleum Engineering
    • Volume 53, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    PSO-ANFIS and ANN Modeling of Propane/Propylene Separation using Cu-BTC Adsorbent

    (ندگان)پدیدآور
    Fathi, SohrabRezaei, AbbasMohadesi, MajidNazari, Mona
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    548.3کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (SA), temperature (T), and pressure (P) were related to the output parameter which is propylene or propane adsorption. A thorough comparison between the experimental, artificial neural network and particle swarm optimization-adaptive neuro-fuzzy inference system models was carried out to prove its efficiency in accurate prediction and computation time. The obtained results show that both investigated methods have good agreements in comparison with the experimental data, but the proposed artificial neural network structure is more precise than our proposed PSO-ANFIS structure. Mean absolute error (MAE) for ANN and ANFIS models were 0.111 and 0.421, respectively.
    کلید واژگان
    Adsorption
    ANN
    Cu-BTC
    Propylene/Propane
    PSO-ANFIS

    شماره نشریه
    2
    تاریخ نشر
    2019-12-01
    1398-09-10
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran
    Department of Electrical Engineering, Kermanshah University of Technology, Kermanshah, Iran
    Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran
    Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran

    شاپا
    2423-673X
    2423-6721
    URI
    https://dx.doi.org/10.22059/jchpe.2019.269113.1256
    https://jchpe.ut.ac.ir/article_72487.html
    https://iranjournals.nlai.ir/handle/123456789/284406

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب