• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Chemical and Petroleum Engineering
    • Volume 53, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Chemical and Petroleum Engineering
    • Volume 53, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigation of Asphaltene Precipitation Using Response Surface Methodology Combined with Artificial Neural Network

    (ندگان)پدیدآور
    Hosseini-dastgerdi, ZeinabJafarzadeh-Ghoushchi, Saeid
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    996.6کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The precipitation of asphaltene, one of the components of oil, in reservoirs, transfer lines, and equipment causes many problems. Accordingly, researchers are prompted to determine the factors affecting asphaltene precipitation and methods of avoiding its formation. Predicting precipitation and examining the simultaneous effect of operational variables on asphaltene precipitation are difficult because of the multiplicity, complexity, and nonlinearity of factors affecting asphaltene precipitation and the high cost of experiments. This study combined the use of response surface methodology and the artificial neural network to predict asphaltene precipitation under the mutual effects of various parameters. The values of such parameters were determined to reach the minimum amount of precipitation. We initially selected the appropriate algorithm for predicting asphaltene precipitation from the two neural network algorithms. The outputs of designed experiments in response surface methodology were determined using the optimum algorithm of the neural network. The effects of variables on asphaltene precipitation were then investigated by response surface methodology. According to the results, the minimum precipitation of asphaltene achieved at zero mole percent of injected nitrogen and methane, 10–20 mole percent of injected carbon dioxide, asphaltene content of 0.46, the resin content of 16.8 weight percent, the pressure of 333 psi, and temperature of 180 . Results showed that despite the complexities of asphaltene precipitation, the combination of artificial neural network with response surface methodology can be successfully used to investigate the mutual effect of different variables affecting asphaltene precipitation.
    کلید واژگان
    Artificial Neural Network Asphaltene
    desirability
    Precipitation
    response surface methodology

    شماره نشریه
    2
    تاریخ نشر
    2019-12-01
    1398-09-10
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
    Faculty of Industrial Engineering, Urmia University of Technology, Urmia, Iran

    شاپا
    2423-673X
    2423-6721
    URI
    https://dx.doi.org/10.22059/jchpe.2019.261438.1238
    https://jchpe.ut.ac.ir/article_73622.html
    https://iranjournals.nlai.ir/handle/123456789/284403

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب