• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Computing and Security
    • Volume 7, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Computing and Security
    • Volume 7, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Lightweight Anomaly Detection Model using SVM for WSNs in IoT through a Hybrid Feature Selection Algorithm based on GA and GWO

    (ندگان)پدیدآور
    Davahli, Azamshamsi, mahboubehAbaei, Golnoush
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    6.421 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    As a result of an incredibly fast growth of the number and diversity of smart devices connectable to the internet, commonly through open wireless sensor networks (WSNs) in internet of things (IoT), the access of attackers to the network traffic in the form of intercepting, eavesdropping and rebroadcasting has become much easier. Anomaly or intrusion detection system (IDS) is an efficient security mechanism, however despite the maturity of anomaly detection technologies for wired networks, current technologies with high computational complexity are improper for resource-limited WSNs in IoT and they also fail to detect new WSN attacks. Furthermore, dealing with the huge amount of intrusion wireless traffic collected by sensors, causing slow detecting process, higher resource usage and inaccurate detection. Hence, considering WSN limitations for developing an IDS in IoT, establishes a significant challenge for security researchers. This paper proposes a new model to develop a support vector machine (SVM)-based lightweight IDS (LIDS) using combination concepts of genetic algorithm (GA) and mathematical equations of grey wolf optimizer (GWO) which is called GABGWO. The GABGWO through applying two new crossover and mutation operators tries to find the most relevant traffic features and eliminate worthless ones, in order to increase the performance of the LIDS. The performance of LIDS is evaluated using AWID real-world wireless dataset under two scenarios with and without using GABGWO. The results showed a promising behavior of the proposed GABGWO algorithm in choosing optimal traffics, decreasing the computational costs and providing high accuracies for LIDS. The hybrid algorithm is also compared to pure GA and GWO and other recent methods and it is found that its performance is better than them.
    کلید واژگان
    Wrapper Feature Selection
    Metaheuristic Algorithms
    Grey Wolf Optimizer (GWO)
    genetic algorithm (GA)
    Wireless Networks
    Internet of Things (IoT)
    Anomaly Detection
    Support Vector Machine (SVM)
    Algorithms

    شماره نشریه
    1
    تاریخ نشر
    2020-01-01
    1398-10-11
    ناشر
    University of Isfahan & Iranian Society of Cryptology
    سازمان پدید آورنده
    Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran.
    Faculty of electrical and computer engineering, Qom university of technology Qom, Iran.
    Faculty of Electrical, Computer, and Biomedical Engineering, Shahabdanesh University.

    شاپا
    2322-4460
    2383-0417
    URI
    https://dx.doi.org/10.22108/jcs.2020.119468.1033
    http://jcomsec.ui.ac.ir/article_24558.html
    https://iranjournals.nlai.ir/handle/123456789/283074

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب