Statistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
(ندگان)پدیدآور
پدیدآور نامشخصنوع مدرک
TextResearch manuscript
زبان مدرک
Englishچکیده
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant improvement achieved by our approach compared to the standard version of confidence intervals algorithm. Finally, real data analysis shows that the accuracy of our method compared to that of previous works for computing the confidence interval.
کلید واژگان
nonparametric topological data analysispersistence landscape
persistence homology
bootstrap method
density estimation
Statistical Computing
شماره نشریه
1تاریخ نشر
2020-06-011399-03-12
ناشر
Allameh Tabataba’i University PressAllameh Tabataba'i University
شاپا
2676-59262676-5934




