مقایسه کاربرد روشهای شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره براساس تحلیل مؤلفههای اصلی برای پیشبینی غلظت میانگین روزانه کربنمونوکسید: بررسی موردی شهر تهران
(ندگان)پدیدآور
نوری, روحاللهاشرفی, خسرواژدرپور, ابوالفضلنوع مدرک
Textزبان مدرک
فارسیچکیده
هدف از این مقاله، پیشبینی میانگین غلظت روزانه کربنمونوکسید در هوای شهر تهران با استفاده از دو مدل شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره برحسب تحلیل مؤلفه اصلی (PCA) است. از روش PCA برای از بین بردن همراستایی چندگانه (multicolinearity) بین متغیرهای ورودی و تفسیر بهتر نتایج مدل رگرسیونی استفاده شده است. همچنین با استفاده از شبکه عصبی Feed-Forward با یک لایه پنهان نیز مدل مناسب برای این امر ایجاد شده است. بهمنظور پیشبینی غلظت کربنمونوکسید آمار سالهای 1383 و 1384 ایستگاه قلهک واقع در شمال تهران مورد استفاده قرار گرفته است. پس از اجرای مدلهای پیشگفته، ضریب همبستگی (R)، شاخص میانگین نسبی خطای مطلق (MARE) و خطای میانگین مجموع مربعات (RMSE) در شبکه عصبی برای مرحله آزمون، به ترتیب برابر با 716/0، 158/0 و 969/0 بهدست آمده که در مقایسه با مدل ترکیبی رگرسیونی (581/0= R ، 189/0 MARE = و 138/1 RMSE =) حاکی از برتری مطلق نتایج شبکة عصبی نسبت به مدل ترکیبی رگرسیونی است.
کلید واژگان
تحلیل مؤلفه اصلیشبکه عصبی مصنوعی
کربنمونوکسید
رگرسیون خطی چندمتغیره
تهران
شماره نشریه
1تاریخ نشر
2008-03-201387-01-01
ناشر
موسسه ژئوفیزیک دانشگاه تهرانInstitute of Geophysics, University of Tehran
شاپا
2538-371X2538-3906




