• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Biomedical Physics and Engineering
    • Volume 3, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Biomedical Physics and Engineering
    • Volume 3, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

    (ندگان)پدیدآور
    Amiri, SMovahedi, MMKazemi, KParsaei, H
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    724.5کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image artifacts such as noise, low contrast and intensity non-uniformity, there are some classification errors in the results of image segmentation.Objective: An automated algorithm based on multi-layer perceptron neural networks (MLPNN) is presented for segmenting MR images. The system is to identify two tissues of WM and GM in human brain 2D structural MR images. A given 2D image is processed to enhance image intensity and to remove extra cerebral tissue. Thereafter, each pixel of the image under study is represented using 13 features (8 statistical and 5 non- statistical features) and is classified using a MLPNN into one of the three classes WM and GM or unknown.Results: The developed MR image segmentation algorithm was evaluated using 20 real images. Training using only one image, the system showed robust performance when tested using the remaining 19 images. The average Jaccard similarity index and Dice similarity metric for the GM and WM tissues were estimated to be 75.7 %, 86.0% for GM, and 67.8% and 80.7%for WM, respectively.Conclusion: The obtained performances are encouraging and show that the presented method may assist with segmentation of 2D MR images especially where categorizing WM and GM is of interest.
    کلید واژگان
    Image segmentation
    Artificial neural networks
    Multi-layer perceptron

    شماره نشریه
    4
    تاریخ نشر
    2013-12-01
    1392-09-10
    ناشر
    Shiraz University of Medical Sciences
    سازمان پدید آورنده
    Department of Medical Physics and Biomedical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
    Department of Medical Physics and Biomedical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
    Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
    Department of Medical Physics and Biomedical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

    شاپا
    2251-7200
    URI
    https://jbpe.sums.ac.ir/article_43150.html
    https://iranjournals.nlai.ir/handle/123456789/26604

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب