• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Biomedical Physics and Engineering
    • Volume 10, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Biomedical Physics and Engineering
    • Volume 10, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predicting Lung Cancer Patients’ Survival Time via Logistic Regression-based Models in a Quantitative Radiomic Framework

    (ندگان)پدیدآور
    Shayesteh, S PShiri, IKarami, A HHashemian, RKooranifar, SGhaznavi, HShakeri-Zadeh, A
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.146 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Background: Selection of the best treatment modalities for lung cancer depends on many factors, like survival time, which are usually determined by imaging. Objectives: To predict the survival time of lung cancer patients using the advantages of both radiomics and logistic regression-based classification models.Material and Methods: Fifty-nine patients with primary lung adenocarcinoma were included in this retrospective study and pre-treatment contrast-enhanced CT images were acquired. The patients lived more than 2 years were classified as the ‘Alive' class and otherwise as the ‘Dead' class. In our proposed quantitative radiomic framework, we first extracted the associated regions of each lung lesion from pre-treatment CT images for each patient via grow cut segmentation algorithm. Then, 40 radiomic features were extracted from the segmented lung lesions. In order to enhance the generalizability of the classification models, the mutual information-based feature selection method was applied to each feature vector. We investigated the performance of six logistic regression-based classification models. Results: It was observed that the mutual information feature selection method can help the classifier to achieve better predictive results. In our study, the Logistic regression (LR) and Dual Coordinate Descent method for Logistic Regression (DCD-LR) models achieved the best results indicating that these classification models have strong potential for classifying the more important class (i.e., the ‘Alive' class). Conclusion: The proposed quantitative radiomic framework yielded promising results, which can guide physicians to make better and more precise decisions and increase the chance of treatment success.
    کلید واژگان
    Radiomics
    Lung Cancer
    Survival analysis
    Computed Tomography

    شماره نشریه
    4
    تاریخ نشر
    2020-08-01
    1399-05-11
    ناشر
    Shiraz University of Medical Sciences
    سازمان پدید آورنده
    PhD, Department of Physiology, Pharmacology and medical physics, Faculty of Medicine, Alborz University of Medical Sciences, Karaj. Iran
    MSc, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
    PhD, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
    MD, PhD, US oncology Inc, Cincinnati, OH, USA
    MD, Department of Pulmonary Sciences, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
    MD, Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran
    PhD, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran

    شاپا
    2251-7200
    URI
    https://dx.doi.org/10.31661/jbpe.v0i0.1027
    https://jbpe.sums.ac.ir/article_45726.html
    https://iranjournals.nlai.ir/handle/123456789/26508

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب