• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Biomedical Physics and Engineering
    • Volume 8, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Biomedical Physics and Engineering
    • Volume 8, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis

    (ندگان)پدیدآور
    Fooladi, MSharini, HMasjoodi, SKhodamoradi, E
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.109 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets. Objective: We classified patients with relapsing-remitting multiple sclerosis (RRMS) from healthy subjects using QMTI and T1 longitudinal relaxation time data of brain white matter, then the performance of three ANN-based classifiers have been investigated. Materials and Methods: The input features of ANN algorithms, including multilayer perceptron (MLP), radial basis function (RBF) and ensemble neural networks based on Akaike information criterion (ENN-AIC) were extracted in the form of QMTI and T1 mean values from parametric maps. The ANNs quantitative performance is measured by the standard evaluation of confusion matrix criteria. Results: The results indicate that ENN-AIC-based classification method has achieved 90% accuracy, 92% sensitivity and 86% precision compared to other ANN models. NPV, FPR and FDR values were found to be 0.933, 0.125 and 0.133, respectively, according to the proposed ENN-AIC model. A graphical representation of how to track actual data by the predictive values derived from ANN algorithms, was also presented.Conclusion: It has been demonstrated that ENN-AIC as an effective neural network improves the quality of classification results compared to MLP and RBF.In addition, this research provides a new direction to classify a large amount of quantitative MRI data that can help the physician in a correct MS diagnosis.
    کلید واژگان
    Quantitative Magnetization Transfer Imaging
    Relapsing Remitting Multiple Sclerosis
    Artificial neural networks
    Magnetic Resonance Imaging

    شماره نشریه
    4
    تاریخ نشر
    2018-12-01
    1397-09-10
    ناشر
    Shiraz University of Medical Sciences
    سازمان پدید آورنده
    Medical Physics and Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
    Medical Physics and Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
    Medical Physics and Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
    Radiology and Nuclear Medicine Department, School of Allied Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran

    شاپا
    2251-7200
    URI
    https://dx.doi.org/10.31661/jbpe.v8i4Dec.926
    https://jbpe.sums.ac.ir/article_43337.html
    https://iranjournals.nlai.ir/handle/123456789/26494

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب