• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering and Management Studies
    • Volume 4, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering and Management Studies
    • Volume 4, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integrated modeling and solving the resource allocation problem and task scheduling in the cloud computing environment

    (ندگان)پدیدآور
    Shams, MaryamJafarzadeh Afshari, AhmadKhakbaz, Amir
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    731.2کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Review Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Cloud computing is considered to be a new service provider technology for users and businesses. However, the cloud environment is facing a number of challenges. Resource allocation in a way that is optimum for users and cloud providers is difficult because of lack of data sharing between them. On the other hand, job scheduling is a basic issue and at the same time a big challenge in reaching high efficiency in the cloud computing environment. In this paper, “the cloud resources management problem" is investigated that includes allocation and scheduling of computing resources, such that providers achieve the high efficiency of resources and users receive their needed applications in an efficient manner and with minimum cost. For this purpose, a group technology based non-linear mathematical model is presented with an aim at minimization of load difference of servers, number of transfers between servers, number of active virtual machines, maximum construction time, the cost of performing jobs and active servers energy consumption. To solve the model, a meta-heuristic multi-objective hybrid Genetic and Particle Swarm Optimization algorithm is proposed for resource allocation and scheduling. In order to demonstrate the validity and efficiency of the algorithm, a number of problems with different dimensions are randomly created and accordingly the efficiency and convergence capability of the suggested algorithm is investigated. The results indicated that the proposed hybrid method has had an acceptable performance in generating high quality, diverse and sparse solutions.
    کلید واژگان
    cloud computing
    Resource Allocation
    Task scheduling
    non-dominated sorting genetic algorithm
    Particle Swarm Optimization

    شماره نشریه
    1
    تاریخ نشر
    2017-06-01
    1396-03-11
    ناشر
    Iran Center for Management Studies
    سازمان پدید آورنده
    Department of industrial engineering, Shomal University, Amol, Iran.
    Department of industrial engineering, Shomal University, Amol, Iran.
    Department of industrial engineering, Shomal University, Amol, Iran.

    شاپا
    2476-308X
    2476-3098
    URI
    https://dx.doi.org/10.22116/jiems.2017.51964
    http://jiems.icms.ac.ir/article_51964.html
    https://iranjournals.nlai.ir/handle/123456789/257815

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب