• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Advances in Industrial Engineering
    • Volume 52, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Advances in Industrial Engineering
    • Volume 52, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Forecasting of IRAN Power Demand Network by hybrid of Support Vector Regression model and Fruit fly Optimization Algorithm

    (ندگان)پدیدآور
    Soleimani, PariaYaghobi, Zohreh
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.261 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Accurate monthly power demand network forecasting can help to plan the energy and it can handle the correct management of the power consumption. It has been found that the monthly electricity consumption demonstrates a complex nonlinear characteristic and has an obvious seasonal tendency. One of the models that is widely used to predict the nonlinear time series is the support vector regression model (SVR) in which the selection of key parameters and the effect of seasonal changes could be considered. The important issues in this research are to determine the parameters of the support vector regression model optimally, as well as the adjustment of the nonlinear and seasonal trends of the electricity data. The method that is proposed by this study is to hybrid the support vector regression model (SVR) with Fruit fly optimization Algorithm (FOA) and the seasonal index adjustment to forecast the monthly power demand. In addition, in order to evaluate the performance of the hybrid predictive model a small sample of the monthly power demand from Iran and a large sample of Iran monthly electricity production has been used to demonstrate the predictive model performance. This study also evaluates the superiority of the SFOASVR model to the other known predictive methods. In terms of the prediction accuracy, we used the evaluation criteria such as Root Mean Square Error (RMSE) and mean absolute percentage error (MAPE) as well as Wilcoxon's nonparametric statistical test. The results show that the SFOASVR model has less error than the other forecasting models and is superior to the most other models in terms of Wilcoxon test. Therefore, SFOASVR method is an appropriate option for prediction of the power demand.
    کلید واژگان
    Forecast
    Power demand network
    Seasonal changes
    Support Vector Regression (SVR)
    Fruit fly Optimization Algorithm (FOA)
    Economic and Energy Planning

    شماره نشریه
    3
    تاریخ نشر
    2018-10-01
    1397-07-09
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
    Department of Industrial engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

    شاپا
    2423-6896
    2423-6888
    URI
    https://dx.doi.org/10.22059/jieng.2019.249233.1509
    https://jieng.ut.ac.ir/article_71911.html
    https://iranjournals.nlai.ir/handle/123456789/257727

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب