طراحی مدلی جهت پیش بینی بازده شاخص بورس (با تاکید بر مدل های ترکیبی شبکه عصبی و مدل های با حافظه بلندمدت)
(ندگان)پدیدآور
نجارزاده, رضاذوالفقاری, مهدیغلامی, صمدنوع مدرک
Textمقاله پژوهشی
زبان مدرک
فارسیچکیده
این پژوهش به معرفی مدلهایی از ترکیب خانواده GARCH و شبکه عصبی مصنوعی، جهت پیشبینی بازدهی روزانه شاخص بورس اوراق بهادار تهران طی فاصله زمانی 1396-1387 میپردازد. وجود ویژگی حافظه بلندمدت در واریانس شرطی بازدهی شاخص کل بورس موجب شده تا علاوه بر مدلهای دارای حافظه کوتاهمدت GARCH و EGARCH در این پژوهش از مدلهای FIGARCH و FIEGARCH که دارای ویژگی حافظه بلندمدت هستند؛ استفاده گردد. علاوه بر بکارگیری مدلهای حافظه کوتاهمدت، با توجه به کارایی بهتر مدلهای ترکیبی (در مقایسه با مدلهای فردی) در پیشبینی دادههای مالی، در این مطالعه، تمامی مدلهای خانواده GARCH (اعم از کوتاهمدت و بلندمدت) با شبکه عصبی مصنوعی ترکیب و با استفاده از مدلهای ترکیبی حاصلشده، بازده شاخص بورس برای 10 روز آینده بهصورت گامبهگام پیشبینی و دقت آن براساس معیارهای ارزیابی مورد بررسی قرار گرفت. یافتههای تحقیق نشان داد که مدل ترکیبی FIEGARCH- شبکه عصبی با توزیع تی- استیودنت در پیشبینی بازده شاخص کل سهام کارآمدتر و دارای خطای پیشبینی کمتری نسبت به سایر مدلهای رقیب است.
کلید واژگان
بازار سهامپیشبینی
خانواده GARCH
شبکه عصبی
مدل ترکیبی
شماره نشریه
34تاریخ نشر
2020-08-221399-06-01
ناشر
انجمن مهندسی مالی ایرانسازمان پدید آورنده
دانشگاه تربیت مدرسدانشگاه تربیت مدرس
دانشگاه تربیت مدرس




