• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Environmental Research
    • Volume 3, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Environmental Research
    • Volume 3, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Urban Expansion Simulation Using Geospatial Information System and Artificial Neural Networks

    (ندگان)پدیدآور
    Pijanowski, B.CTayyebi, A.Delavar, M.R.Yazdanpanah, M.J.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    672.1کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Urban Expansion Model (UEM) was adapted to simulate urbanization which implements Geospatial Information Systems (GIS), Artificial Neural Networks (ANNs) and Remote Sensing (RS). Two satellite imageries with specific time interval, socio-economic and environmental variables have been employed in order to simulate urban expansion. Socio-economic and environmental variables were used as inputs while construction and non- construction areas were used as outputs to train the neural network. Calibration of proposed model was performed with area under the ROC Curve (AROC) and Kappa Statistic (KS) which are non-shape performance metric. A real-life case study of Tehran Metropolitan Area (TMA) is presented to demonstrate the process. This paper presents a version of the UEM which parameterized for TMA and explores how factors such as road, building area, service centre, green space, elevation, aspect and slope can influence urbanization. Having urban expansion model with specific time interval and assuming the existence of the same rate of urbanization, new construction areas of region can be predicted. The overall accuracy of the model to predict new construction areas was 80% and 78% with AROC and KS, respectively.
    کلید واژگان
    Urban Expansion Model
    Geospatial Information System
    Artificial Neural Network
    remote sensing
    Satellite Imagery
    Classification

    شماره نشریه
    4
    تاریخ نشر
    2009-10-01
    1388-07-09
    ناشر
    University of Tehran/Springer
    سازمان پدید آورنده
    Department of Forestry & Natural Resources, Purdue University, West Lafayettee
    Department of Surveying & Geomatics Eng., College of Eng., University of Tehran, Iran
    Department of Surveying & Geomatics Eng., College of Eng., University of Tehran, Iran
    School of Electrical and Computer Eng., College of Eng., University of Tehran, Iran

    شاپا
    1735-6865
    2008-2304
    URI
    https://dx.doi.org/10.22059/ijer.2010.64
    https://ijer.ut.ac.ir/article_64.html
    https://iranjournals.nlai.ir/handle/123456789/25462

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب