• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Information Technology Management
    • Volume 11, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Information Technology Management
    • Volume 11, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effective Learning to Rank for the Persian Web Content

    (ندگان)پدیدآور
    Keyhanipour, Amir Hosein
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    881.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Persian language is one of the most widely used languages in the Web environment. Hence, the Persian Web includes invaluable information that is required to be retrieved effectively. Similar to other languages, ranking algorithms for the Persian Web content, deal with different challenges, such as applicability issues in real-world situations as well as the lack of user modeling. CF-Rank, as a recently proposed learning to rank data, aims to deal with such issues by the classifier fusion idea. CF-Rank generates a few click-through features, which provide a compact representation of a given primitive dataset. By constructing the primitive classifiers on each category of click-through features and aggregating their decisions by the use of information fusion techniques, CF-Rank has become a successful ranking algorithm in English datasets. In this paper, CF-Rank is customized for the Persian Web content. Evaluation results of this algorithm on the dotIR dataset indicate that the customized CF-Rank outperforms baseline rankings. Especially, the improvement is more noticeable at the top of ranked lists, which are observed most of the time by the Web users. According to the NDCG@1 and MAP evaluation criteria, comparing the CF-Rank with the preeminent baseline algorithm on the dotIR dataset indicates an improvement of 30 percent and 16.5 percent, respectively.
    کلید واژگان
    Learning to rank
    Persian language
    CF-Rank algorithm
    dotIR dataset
    Information fusion
    Data, Text and Web Mining

    شماره نشریه
    4
    تاریخ نشر
    2019-12-01
    1398-09-10
    ناشر
    Faculty of Management, University of Tehran
    سازمان پدید آورنده
    Assistant Professor, Computer Engineering Department, Faculty of Engineering, College of Farabi, University of Tehran, Iran.

    شاپا
    2008-5893
    2423-5059
    URI
    https://dx.doi.org/10.22059/jitm.2019.284726.2377
    https://jitm.ut.ac.ir/article_73950.html
    https://iranjournals.nlai.ir/handle/123456789/250516

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب