| dc.contributor.author | Jokar, Z. | en_US |
| dc.contributor.author | Niknam, A. | en_US |
| dc.date.accessioned | 1399-07-09T03:41:10Z | fa_IR |
| dc.date.accessioned | 2020-09-30T03:41:10Z | |
| dc.date.available | 1399-07-09T03:41:10Z | fa_IR |
| dc.date.available | 2020-09-30T03:41:10Z | |
| dc.date.issued | 2017-09-01 | en_US |
| dc.date.issued | 1396-06-10 | fa_IR |
| dc.date.submitted | 2017-08-09 | en_US |
| dc.date.submitted | 1396-05-18 | fa_IR |
| dc.identifier.citation | Jokar, Z., Niknam, A.. (2017). Characterization of $(delta, varepsilon)$-double derivation on rings and algebras. Journal of Linear and Topological Algebra ( JLTA ), 06(03), 191-198. | en_US |
| dc.identifier.issn | 2252-0201 | |
| dc.identifier.issn | 2345-5934 | |
| dc.identifier.uri | http://jlta.iauctb.ac.ir/article_536041.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/245880 | |
| dc.description.abstract | This paper is an attempt to prove the following result:<br />Let $n>1$ be an integer and let $mathcal{R}$ be a $n!$-torsion-free ring with the identity element. Suppose that $d, delta, varepsilon$ are additive mappings satisfying<br />begin{equation}<br />d(x^n) = sum^{n}_{j=1}x^{n-j}d(x)x^{j-1}+sum^{n-1}_{j=1}sum^{j}_{i=1}x^{n-1-j}Big(delta(x)x^{j-i}varepsilon(x)+varepsilon(x)x^{j-i}delta(x)Big)x^{i-1}quad<br />end{equation}<br />for all $x in mathcal{R}$. If $delta(e) = varepsilon(e) = 0$, then $d$ is a Jordan $(delta, varepsilon)$-double derivation. In particular, if $mathcal{R}$ is a semiprime algebra and further, $delta(x) varepsilon(x) + varepsilon(x) delta(x) = frac{1}{2}Big[(delta varepsilon + varepsilon delta)(x^2) - (delta varepsilon(x) + varepsilon delta(x))x - x (delta varepsilon(x) + varepsilon delta(x))Big]$ holds for all $x in mathcal{R}$, then $d - frac{delta varepsilon + varepsilon delta}{2}$ is a derivation on $mathcal{R}$. | en_US |
| dc.format.extent | 119 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Central Tehran Branch, Islamic Azad University | en_US |
| dc.relation.ispartof | Journal of Linear and Topological Algebra ( JLTA ) | en_US |
| dc.subject | derivation | en_US |
| dc.subject | Jordan derivation | en_US |
| dc.subject | (δ,ε)-double derivation | en_US |
| dc.subject | n-torsion free semiprime ring | en_US |
| dc.subject | Operator theory | en_US |
| dc.title | Characterization of $(delta, varepsilon)$-double derivation on rings and algebras | en_US |
| dc.type | Text | en_US |
| dc.type | Research Paper | en_US |
| dc.contributor.department | Department of Mathematics, Mashhad Branch, Islamic Azad University-Mashhad, Iran | en_US |
| dc.contributor.department | Department of Mathematics, Ferdowsi University of Mashhad and Center of Excellence in Analysis on Algebraic Structures (CEAAS) Ferdowsi University, Mashhad, Iran | en_US |
| dc.citation.volume | 06 | |
| dc.citation.issue | 03 | |
| dc.citation.spage | 191 | |
| dc.citation.epage | 198 | |