نمایش مختصر رکورد

dc.contributor.authorJokar, Z.en_US
dc.contributor.authorNiknam, A.en_US
dc.date.accessioned1399-07-09T03:41:10Zfa_IR
dc.date.accessioned2020-09-30T03:41:10Z
dc.date.available1399-07-09T03:41:10Zfa_IR
dc.date.available2020-09-30T03:41:10Z
dc.date.issued2017-09-01en_US
dc.date.issued1396-06-10fa_IR
dc.date.submitted2017-08-09en_US
dc.date.submitted1396-05-18fa_IR
dc.identifier.citationJokar, Z., Niknam, A.. (2017). Characterization of $(delta‎, ‎varepsilon)$-double derivation on rings ‎and ‎algebras. Journal of Linear and Topological Algebra ( JLTA ), 06(03), 191-198.en_US
dc.identifier.issn2252-0201
dc.identifier.issn2345-5934
dc.identifier.urihttp://jlta.iauctb.ac.ir/article_536041.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/245880
dc.description.abstractThis paper is an attempt to prove the following result:<br />Let $n>1$ be an integer and let $mathcal{R}$ be a $n!$-torsion-free ring with the identity element. Suppose that $d, delta, varepsilon$ are additive mappings satisfying<br />begin{equation}<br />d(x^n) = sum^{n}_{j=1}x^{n-j}d(x)x^{j-1}+sum^{n-1}_{j=1}sum^{j}_{i=1}x^{n-1-j}Big(delta(x)x^{j-i}varepsilon(x)+varepsilon(x)x^{j-i}delta(x)Big)x^{i-1}quad<br />end{equation}<br />for all $x in mathcal{R}$. If $delta(e) = varepsilon(e) = 0$, then $d$ is a Jordan $(delta, varepsilon)$-double derivation. In particular, if $mathcal{R}$ is a semiprime algebra and further, $delta(x) varepsilon(x) + varepsilon(x) delta(x) = frac{1}{2}Big[(delta varepsilon + varepsilon delta)(x^2) - (delta varepsilon(x) + varepsilon delta(x))x - x (delta varepsilon(x) + varepsilon delta(x))Big]$ holds for all $x in mathcal{R}$, then $d - frac{delta varepsilon + varepsilon delta}{2}$ is a derivation on $mathcal{R}$.en_US
dc.format.extent119
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherCentral Tehran Branch, Islamic Azad Universityen_US
dc.relation.ispartofJournal of Linear and Topological Algebra ( JLTA )en_US
dc.subjectderivationen_US
dc.subjectJordan derivationen_US
dc.subject(δ,‎ε)-double derivationen_US
dc.subject‎n-torsion free semiprime ringen_US
dc.subjectOperator theoryen_US
dc.titleCharacterization of $(delta‎, ‎varepsilon)$-double derivation on rings ‎and ‎algebrasen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentDepartment of Mathematics, Mashhad Branch, Islamic Azad University-Mashhad, Iranen_US
dc.contributor.departmentDepartment of Mathematics, Ferdowsi University of Mashhad and Center of Excellence in Analysis on Algebraic Structures (CEAAS) Ferdowsi University, Mashhad, Iranen_US
dc.citation.volume06
dc.citation.issue03
dc.citation.spage191
dc.citation.epage198


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد