Some relations between $L^p$-spaces on locally compact group $G$ and double coset $Ksetminus G/H$
(ندگان)پدیدآور
Kamyabi Gol, R. A.Fahimian, F.Esmaeelzadeh, F.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $H$ and $K$ be compact subgroups of locally compact group $G$. By considering the double coset space $Ksetminus G/H$, which equipped with an $N$-strongly quasi invariant measure $mu$, for $1leq pleq +infty$, we make a norm decreasing linear map from $L^p(G)$ onto $L^p(Ksetminus G/H,mu)$ and demonstrate that it may be identified with a quotient space of $L^p(G)$. In addition, we illustrate that $L^p(Ksetminus G/H, mu)$ is isometrically isomorphic to a closed subspace of $L^p(G)$. These assist us to study the structure of the classical Banach space created on a double coset space by those produced on topological space.
کلید واژگان
Double coset space$L^p(Ksetminus G/H,mu )$
quotient space of $L^p(G)$
duality of $L^p(K/G,mu)$
Abstract harmonic analysis
شماره نشریه
02تاریخ نشر
2020-06-011399-03-12
ناشر
Central Tehran Branch, Islamic Azad Universityسازمان پدید آورنده
Department of Pure Mathematics, Ferdowsi University of Mashhad and Center of Excellence in Analysis on Algebric Structures (CEAAS), P. O. Box 1159-91775, Mashhad, IranDepartment of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran
Department of Mathematics, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
شاپا
2252-02012345-5934




