• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 10, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 10, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance evaluation of chain saw machines for dimensional stones using feasibility of neural network models

    (ندگان)پدیدآور
    Mohammadi, J.Ataei, M.Kakaie, R.Mikaeil, R.Shaffiee Haghshenas, S.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    8.550 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Prediction of the production rate of the cutting dimensional stone process is crucial, especially when chain saw machines are used. The cutting dimensional rock process is generally a complex issue with numerous effective factors including variable and unreliable conditions of the rocks and cutting machines. The Group Method of Data Handling (GMDH) type of neural network and Radial Basis Function (RBF) neural network, as two kinds of the soft computing method, are powerful tools for identifying and assessing the unpredicted and uncertain conditions. Hence, this work aims to develop prediction models for estimating the production rate of chain saw machines using the RBF neural network and GMDH type of neural network, and then to compare the results obtained from the developed models based on the performance indices including value account for, root mean square error, and coefficient of determination. For this purpose, the parameters of 98 laboratory tests on 7 carbonate rocks are accurately investigated, and the production rate of each test is measured. Some operational characteristics of the machines, i.e. arm angle, chain speed, and machine speed, and also the three important physical and mechanical characteristics including uniaxial compressive strength, Los Angeles abrasion test, and Schmidt hammer (Sch) are considered as the input data, and another operational characteristic of the machines, i.e. production rate, is considered as the output dataset. The results obtained prove that the developed GMDH model is able to provide highly promising results in order to predict the production rate of chain saw machines based on the performance indices.
    کلید واژگان
    Dimensional Stone
    Chain Saw Machine
    Production Rate
    Group Method of Data Handling
    Carbonate Rocks
    Rock Mechanics

    شماره نشریه
    4
    تاریخ نشر
    2019-10-01
    1398-07-09
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
    Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
    Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
    Department of Mining and Metallurgical Engineering, Urmia University of Technology, Urmia, Iran
    Young Researchers and Elite Club, Rasht Branch, Islamic Azad University, Rasht, Iran

    شاپا
    2251-8592
    2251-8606
    URI
    https://dx.doi.org/10.22044/jme.2018.7013.1542
    http://jme.shahroodut.ac.ir/article_1246.html
    https://iranjournals.nlai.ir/handle/123456789/243014

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب