• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 8, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 8, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sub-pixel classification of hydrothermal alteration zones using a kernel-based method and hyperspectral data; A case study of Sarcheshmeh Porphyry Copper Mine and surrounding area, Kerman, Iran

    (ندگان)پدیدآور
    Salimi, A.Ziaii, M.Amiri, A.Hosseinjani Zadeh, M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.386 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Case Study
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Remote sensing image analysis can be carried out at the per-pixel (hard) and sub-pixel (soft) scales. The former refers to the purity of image pixels, while the latter refers to the mixed spectra resulting from all objects composing of the image pixels. The spectral unmixing methods have been developed to decompose mixed spectra. Data-driven unmixing algorithms utilize the reference data called training samples and end-members. The performance of algorithms using training samples can be negatively affected by the curse of dimensionality. This problem is usually observed in the hyperspectral image classification, especially when a low number of training samples, compared to the large number of spectral bands of hyperspectral data, are available. An unmixing method that is not highly impressed by the curse of dimensionality is a promising option. Among all the methods used, Support Vector Machine (SVM) is a more robust algorithm used to overcome this problem. In this work, our aim is to evaluate the capability of a regression mode of SVM, namely Support Vector Regression (SVR), for the sub-pixel classification of alteration zones. As a case study, the Hyperion data for the Sarcheshmeh, Darrehzar, and Sereidun districts is used. The main classification steps rely on 20 field samples taken from the Darrehzar area divided into 12 and 8 samples for training and validation, respectively. The accuracy of the sub-pixel maps obtained demonstrate that SVR can be successfully applied in the curse of dimensional conditions, where the size of the training samples (12) is very low compared to the number of spectral bands (165).
    کلید واژگان
    Hydrothermal Alteration
    Hyperspectral Remote Sensing
    Soft Classification
    Spectral Unmixing
    Support Vector Regression (SVR)

    شماره نشریه
    4
    تاریخ نشر
    2017-10-01
    1396-07-09
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    School of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
    School of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
    Computer Engineering Group, Faculty of Engineering, University of Zanjan, Zanjan, Iran
    Department of Ecology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran

    شاپا
    2251-8592
    2251-8606
    URI
    https://dx.doi.org/10.22044/jme.2016.781
    http://jme.shahroodut.ac.ir/article_781.html
    https://iranjournals.nlai.ir/handle/123456789/242905

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب